

UNIVERSIDADE FEDERAL DE OURO PRETO ESCOLA DE MINAS DEPARTAMENTO DE ENGENHARIA CIVIL PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL

MÉTODO PARA AVALIAÇÃO DO DESEMPENHO TÉRMICO E ACÚSTICO DE EDIFICAÇÕES APLICADO EM PAINÉIS DE FECHAMENTO INDUSTRIALIZADOS

UNIVERSIDADE FEDERAL DE OURO PRETO ESCOLA DE MINAS DEPARTAMENTO DE ENGENHARIA CIVIL PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL

MÉTODO PARA AVALIAÇÃO DO DESEMPENHO TÉRMICO E ACÚSTICO DE EDIFICAÇÕES APLICADO EM PAINÉIS DE FECHAMENTO INDUSTRIALIZADOS

AUTORA: Rovadávia Aline de Jesus Ribas

ORIENTADOR: Prof. Dr. Henor Artur de Souza

Tese apresentada ao Programa de Pós-Graduação do Departamento de Engenharia Civil da Escola de Minas da Universidade Federal de Ouro Preto, como parte integrante dos requisitos para obtenção do título de Doutor em Ciências da Engenharia Civil, área de concentração: Construção Metálica.

R482m Ribas, Rovadávia Aline de Jesus.

Método para avaliação do desempenho térmico e acústico de edificações aplicado em painéis industrializados [manuscrito] / Rovadávia Aline de Jesus Ribas - 2013.

xxiii, 197f.: il. color.; grafs.; tabs.

Orientador: Prof. Dr. Henor Artur de Souza.

Tese (Doutorado) - Universidade Federal de Ouro Preto. Escola de Minas. Departamento de Engenharia Civil. Programa de Pós-graduação em Engenharia Civil.

Área de concentração: Construção Metálica.

1. Edifícios - Propriedades térmicas - Teses. 2. Acústica arquitetônica - Teses. 3. Conforto térmico - Teses. I. Souza, Henor Artur de. II. Universidade Federal de Ouro Preto. II. Título.

CDU: 624.014.2:72.04

Catalogação: sisbin@sisbin.ufop.br

MÉTODO PARA AVALIAÇÃO DO DESEMPENHO TÉRMICO E ACÚSTICO DE EDIFICAÇÕES APLICADO EM PAINÉIS DE FECHAMENTO INDUSTRIALIZADOS

AUTORA: ROVADÁVIA ALINE DE JESUS RIBAS

Esta tese foi apresentada em sessão pública e aprovada em 22 de abril de 2013, pela Banca Examinadora composta pelos seguintes membros:

Prof. Dr. Henor Artur de Souza (Orientador / UFOP)

Andrea Regina Dias da Silva (UFOP)

Prof. Dr. Luiz Joaquim Cardoso Rocha (UFOP)

Prof. Dr. André Luiz Seixlack (UNESP)

Prof. Dr. Eduardo Bauzer Medeiros (UFMG)

AGRADECIMENTOS

A Deus, primeiro motor, fonte de vida e de amor.

A minha mãe Edina, que repousa em minha saudade, e a meu pai, Vicente, grandes exemplos de fé, trabalho, honestidade e integridade.

A meus filhos Sabir e Sávio, pelo imenso amor, carinho e amizade. A Cristiene e Karine pela amabilidade e carinho.

A meus irmãos Roberto, Reinaldo, Raniery, Rossely e Reginaldo, pela compreensão e confiança. A meu irmão Rogério, que nos deixou durante essa jornada e foi nossa referência nos estudos.

A meu marido Antônio, a quem me desculpo pela ausência, mas explico que navegar é preciso.

Ao Prof. Henor, pela orientação, dedicação e paciência.

Aos demais professores do doutorado Francisco de Assis, João Batista e Ricardo, pelos ensinamentos e compreensão.

Aos professores Francisco Célio e Geraldo, pelo apoio.

Aos colegas Prof. Walter Dornelas e Antonio Carlos, in memorian, grandes exemplos de disposição e amizade.

Aos bolsistas Max Miller, Daniel e Josimar, pela ajuda nas simulações.

A todos os meus colegas de curso, principalmente, Eliana, Andréa Regina, André, Flávio, Andréa Rodrigues, Angélica, Adriano, Luciana, Cláudio, Hélio e Roberta, pelo apoio e convivência.

Às minhas colegas de trabalho, Ana, Cristina, Iraci e Neide, pela torcida.

Enfim, a todos que, de alguma forma, contribuíram para a realização desse trabalho. Serão, para sempre, parte de minha vida.

RESUMO

A construção industrializada estruturada em aço pode proporcionar projetos que apresentam desempenho global adequado, desde que o sistema de fechamento apresente desempenho térmico e acústico apropriados ao clima local e ao entorno da edificação. No entanto, a rapidez de montagem desse sistema construtivo exige a aplicação de sistemas de fechamento que possuam a mesma filosofia de pré-fabricação, e uma seleção inadequada pode resultar em necessidade de interferências futuras e resistência à utilização da construção estruturada em aço. É imperativo que os sistemas de fechamento proporcionem desempenho térmico e acústico equilibrado, pois a qualidade do som no ambiente pode afetar tanto o conforto acústico quanto o conforto térmico. No mercado nacional, há vários sistemas de fechamento industrializados que precisam de mais conhecimento quanto às suas propriedades térmicas e acústicas. O objetivo desse trabalho é propor um método para avaliação do desempenho térmico e acústico de edificações, aplicado a sistemas de fechamento industrializados, como os painéis de placa cimentícia, gesso acartonado, pré-moldado de concreto, concreto celular autoclavado e poliestireno expandido. O estudo é realizado em painéis simples e painéis compostos por multicamadas. O método para a análise térmica é baseado na determinação da temperatura e umidade relativa no interior dos ambientes de edificações modelo, aplicando-se o programa computacional de simulação ESP-r (Energy Simulation Program – research). Para a análise acústica é feito o cálculo do tempo de reverberação aplicando-se uma formulação empírica e o módulo acústico do ESP-r, que utilizam os valores de temperatura e umidade obtidos na simulação numérica, além da estimativa da perda na transmissão sonora dos sistemas de fechamento, aplicando-se um método gráfico. Os resultados possibilitam uma avaliação preliminar de parâmetros relevantes na definição de sistemas de fechamento apropriados para uma determinada situação, em termos de desempenho térmico e acústico. Observa-se que, de modo geral, os fechamentos em multicamadas, intermediados por lã de vidro e ar, proporcionam um desempenho térmico e acústico superior ao fechamento simples convencional, com uma melhora no desempenho, respectivamente, na ordem de 12 % e de 18 %.

Palavras chaves: Sistemas de Fechamento. Desempenho Térmico e Acústico. Acústica de edificações.

ABSTRACT

Industrialized steel-structured construction techniques allow designs that could lead to a suitable building global performance if the closing system has thermal and acoustical performance features appropriate to the local climate and to the edification surroundings. However, the assembling quickness these techniques allow demands using closing systems that present the same prefabrication features, and an inappropriate choice of the systems may result in the need of future interventions, and in resistance against the adoption of steelstructured construction. Thus, it is mandatory that the closing systems provide a balanced thermal and acoustical performance, because the quality of sound in the environment can affect the thermal and acoustical comfort. In Brazilian national market there are many industrialized closing systems that need a better understanding about their thermal and acoustic properties. The purpose of this article is to propose a method for the evaluation of thermal and acoustic performance of edifications, applied to their industrialized closing systems, such as cement sheet, drywall, precast concrete panels, autoclaved cellular concrete, and expanded polystyrene. The study was carried out in single panels and in multilayered panels. The method used for the thermal analysis is based on determining the temperature and relative humidity within the model buildings environments, by applying the computational simulation program ESP-r (Energy Simulation Program – research). The acoustic analysis is carried out by calculating the reverberation time, by means of an empirical formulation and the acoustical module of ESP-r, which use the temperature and humidity values obtained from the numerical simulation, besides a graphical method for the estimation of the sound transmission loss of the closing system. The results provide a preliminary assessment of parameters relevant in the definition of closing systems appropriate for the situation under study, in terms of thermal and acoustic performance. In general, it was observed that the multilayered closing systems intermediated by glass wool and air provide a thermal and acoustic performance superior to the conventional single-layer closing system, with an improvement in performance, respectively, on the order of 12 % and 18 %.

Keywords: Closing systems. Thermal and acoustical performance. Acoustics of edifications.

SUMÁRIO

RESUMO	IV
ABSTRACT	V
LISTA DE SÍMBOLOS	X
LISTA DE FIGURAS	XIV
LISTA DE TABELAS	XXII
CAPÍTULO I	
1. INTRODUÇÃO	1
1.1. Objetivo	3
1.2. Justificativa	4
1.3. Metodologia	5
1.4. Estrutura do trabalho	8
CAPÍTULO II	
2. ACÚSTICA EM AMBIENTES FECHADOS	
2.1. Absorção sonora	
2.1.1. Área de absorção do fechamento no interior de um recinto	
2.1.1.1. Equação de Sabine	
2.1.1.2. Equação de Millington	15
2.1.1.3. Equação de Eyring	16
2.1.2. Coeficiente de absorção de Sabine x coeficiente de absorção estatístico	16
2.1.3. Área de absorção equivalente de objetos e ocupantes	17
2.1.4. Absorção equivalente devida ao ar	18
2.2. Campo reverberante	20
2.2.1. Tempo de reverberação	21
2.2.1.1. Equação de Sabine para o cálculo do tempo de reverberação	23
2.2.1.2. Equação de Arau-Puchades para o cálculo do tempo de reverberação	24
2.3. Transmissão sonora	25
2.3.1. Perda na transmissão sonora	27
2.3.2. Perda na transmissão sonora de paredes simples	28
2.3.2.1. Região controlada pela rigidez	29
2.3.2.2. Região controlada pela ressonância	29

2.3.2.3. Região controlada pela massa	31
2.3.2.4. Região controlada pela coincidência	33
2.3.2.5. Perda na transmissão sonora de painéis simplesmente apoiados	35
2.3.2.6. Método gráfico para estimativa da perda na transmissão sonora em painéis simples	s 37
2.3.3. Perda na transmissão sonora de paredes duplas	41
2.3.3.1. Perda na transmissão sonora de paredes duplas segundo Sharp	45
2.4. Efeito das aberturas na perda na transmissão sonora de paredes	51
2.5. Perda na transmissão sonora por flancos	52
CAPÍTULO III	
3. DESEMPENHO TÉRMICO E ACÚSTICO DE EDIFICAÇÕES	53
3.1. Desempenho térmico	53
3.2. Desempenho térmico segundo a norma NBR 15575 (ABNT, 2013)	55
3.2.1. Edificações em fase de projeto	57
3.2.2. Edificações construídas	59
3.2.3. Resistência térmica dos materiais de fechamento	60
3.2.4. Verificação dos níveis mínimos de desempenho térmico dos fechamentos verti externos	
3.2.5. Verificação dos níveis mínimos de desempenho térmico de coberturas	63
3.2.6. Valores máximos e mínimos de temperatura	64
3.3. Desempenho acústico	64
3.4. Desempenho acústico segundo a norma NBR 15575 (ABNT, 2013)	66
3.4.1. Avaliação do desempenho acústico de piso interno	68
3.4.2. Avaliação do desempenho acústico de sistemas de fechamento externos e internos	69
3.4.3. Avaliação do desempenho acústico de sistemas de cobertura	70
CAPÍTULO IV	
4. PAINÉIS DE FECHAMENTO INDUSTRIALIZADOS	71
4.1. Painéis de placa cimentícia (PLC)	71
4.2. Painéis de gesso acartonado (GEA)	73
4.3. Painéis de pré-moldado de concreto (PMC)	75
4.4. Painéis de concreto celular autoclavado (CCA)	78
4.5. Painéis de poliestireno expandido (EPS)	79
4.6. Alvenaria de tijolo cerâmico (ATC)	80
4.7. Propriedades e composição dos painéis avaliados	82

CAPÍTULO V		
5. APLICAÇÃO DA METODOLOGIA PROPOSTA		
5.1. O software ESP-r	87	
5.1.1. Zona térmica e zona acústica		
5.1.2. Simulação térmica	90	
5.1.3. Avaliação acústica pelo cálculo do tempo de reverberação	90	
5.2. Avaliação acústica pelo método gráfico	91	
5.3. Integração entre desempenho térmico e acústico	91	
CAPÍTULO VI		
6. AVALIAÇÃO DO DESEMPENHO TÉRMICO E ACÚSTICO DE EDIFICAÇ	Ç ÕES 93	
6.1. Estudos de caso	93	
6.2. Resultados e análises	100	
6.2.1. Resultados de temperatura e tempo de reverberação, dormitório, Edifício I	100	
6.2.2. Análise dos resultados de temperatura e tempo de reverberação, dormitório, E		
6.2.3. Resultados de temperatura e tempo de reverberação, sse4, Edifício II	108	
6.2.4. Análise dos resultados de temperatura e tempo de reverberação, sse4, Edifício I	I 121	
6.2.5. Resultados de temperatura e tempo de reverberação, auditório, Edifício III		
6.2.6. Análise dos resultados de temperatura e tempo de reverberação, auditório, Ed	lifício III	
	131	
CAPÍTULO VII		
7. ESTIMATIVA DA PERDA NA TRANSMISSÃO SONORA NOS SISTEM FECHAMENTO SIMPLES E EM MULTICAMADAS		
7.1. Resultados da perda na transmissão sonora	136	
7.2. Análise dos resultados de perda na transmissão sonora	156	
7.2.1. Análise dos resultados obtidos para os painéis simples	156	
7.2.2. Análise dos resultados obtidos para os painéis compostos por multicamadas	158	
CAPÍTULO VIII		
8. ANÁLISE GLOBAL DOS RESULTADOS, CONSIDERAÇÕES FIN SUGESTÕES PARA TRABALHOS FUTUROS		
8.1. Considerações finais	166	
8.2. Sugestões para trabalhos futuros	168	
REFERÊNCIAS	160	

176
177
188

LISTA DE SÍMBOLOS

Letras maiúsculas

 A_f^{ar} área equivalente de absorção do ar

 A_f^{fech} área de absorção equivalente devida ao fechamento

 $A_{i,f}^{obj}$ área equivalente de absorção do objeto j para a frequência f

 $A_{k f}^{pes}$ área equivalente de absorção da pessoa k para a frequência f

 $A_f^{obj+pes}$ área equivalente de absorção de objetos e pessoas para a frequência f

 A_{recep}^{Sab} absorção sonora (Sabine) na sala de recepção

 A_f^t área total equivalente do recinto para a frequência f

ATC alvenaria de tijolo cerâmico

 A_{v} área das aberturas para ventilação

 B_S rigidez à flexão \mathbf{C} capacidade térmica

CCA painel de concreto celular autocavado

 $D_{nT,w}$ diferença padronizada de nível ponderada

 $D_{2m,nT,w}$ diferença padronizada de nível ponderada a 2 m

 \boldsymbol{E} módulo de elasticidade

EPS painel de poliestireno expandido

EPW Energyplus Weather Format

ESP-r Energy Simulation Program – research FTfator de correção da transmitância

GEA

painel de gesso acartonado

 L_{v1} nível de pressão sonora na sala da fonte nível de pressão sonora na sala da recepção L_{p2}

LL fixação linha-linha

nível de pressão sonora de impacto padronizado ponderado $L'_{nT.w}$

LP fixação linha-pontual

LVI lã de vidro

Mmassa específica superficial

 N_{i} número de ocorrências de um objeto tipo j

NCA níveis de critérios de avaliação

NR redução de ruído ou noise reduction

P pressão do ar

PLC painel de placa cimentícia P_k número de ocorrências de uma pessoa tipo k

 P_0 pressão de referência do ar

PL fixação pontual-linha

PMC painel de pré-moldado de concreto

PP fixação pontual-pontual

PT perda na transmissão sonora ou índice de redução sonora de uma parede ou painel

 PT_w índice de redução sonora ponderado

R resistência térmica por área de troca de calor dos elementos de uma edificação

 R_{eq} resistência térmica equivalente

RF placa de gesso acartonado resistente ao fogo

RU placa de gesso acartonado hidrófuga ou resistente à umidade

RS variação da radiação solar incidente em plano horizontal
RS Total variação da radiação solar incidente na direção normal

s área de uma superfície interna de um recinto

ST placa de gesso acartonado padrão ou *standart*

 S_x , S_y e S_z somas das áreas dos materiais paralelos aos eixos axiais x, y e z, respectivamente

 S_{xI} área do piso de um recinto S_{x2} área do teto de um recinto

T temperatura do ar

TBS variação da temperatura de bulbo seco

 T_i temperatura interna

 $T_{e,max}$ valor máximo diário da temperatura do ar no exterior de uma edificação valor mínimo diário da temperatura do ar no exterior de uma edificação valor máximo diário da temperatura do ar no interior de uma edificação valor mínimo diário da temperatura do ar no interior de uma edificação valor mínimo diário da temperatura do ar no interior de uma edificação

 T_0 temperatura de referência do ar

 T_{0i} temperatura isotérmica de ponto triplo

TR tempo de reverberação

U coeficiente global de transmissão de calor ou transmitância térmica

V volume de um recinto

 V_1 metade do volume do auditório do Edifício III V_2 volume original do auditório do Edifício III V_3 dobro do volume do auditório do Edifício III

 V_{j}^{obj} volume de um objeto j

 W_i potência sonora incidente W_r potência sonora refletida W_t potência sonora transmitida

Letras minúsculas

a largura de um painel

argam argamassa

b comprimento de um painel

 b_c espaçamento entre caibros na fixação em linha

c velocidade do som no ar

 c_B velocidade da onda de flexão

 c_e calor específico

cerâm cerâmico

circ corredor para circulação de pessoas

d distância entre painéis em uma parede dupla ou largura da cavidade

e espaçamento entre parafusos na fixação pontual

f frequência

 f_c frequência crítica

 f_{coinc} frequência de coincidência

 f_l frequência limite relacionada à largura da cavidade entre os painéis

 f_0 menor frequência de ressonância de uma parede dupla intermediada por uma

camada de ar (conjunto massa-ar-massa)

 f_r frequência de ressonância de uma parede

 f_{re} frequência de ressonância de uma parede dupla intermediada por uma camada de

ar (conjunto massa-ar-massa)

 f_{rN} frequência de relaxação para o nitrogênio

 f_{r0} frequência de relaxação para o oxigênio

h espessura do fechamento

 h_a concentração molar do vapor de água

 k_t condutividade térmica

l espessura do material absorvedor de som

lab laboratório

m coeficiente de absorção sonora do ar

q" fluxo de calor sse sala de seminário

Letras gregas

 θ ângulo de incidência do som

 $\alpha_{i,f}^{\mathit{Sab}}$ coeficiente de absorção sonora de Sabine da superfície i na frequência f

 $\overline{\alpha}_{x}$ média aritmética dos coeficientes de absorção sonora das superfícies do piso e do

teto de um recinto

 $\overline{\alpha}_{v}$ média aritmética dos coeficientes de absorção sonora das superfícies das paredes laterais de um recinto média aritmética dos coeficientes de absorção sonora das superfícies das paredes $\overline{\alpha}_{r}$ de frente e de trás de um recinto $\overline{\alpha}_f^{Sab}$ média dos coeficientes de absorção na frequência f $\alpha_{i,f}^{E}$ coeficiente de absorção estatístico ΔT diferença de temperatura entre duas superfícies ou gradiente térmico coeficiente de Poisson ν absortância à radiação da superfície da cobertura de uma edificação α_c coeficiente de absorção sonora α_i absortância à radiação solar da superfície de uma parede α_p δPT perda na transmissão sonora incremental emissividade da superfície de uma parede З fator de amortecimento interno η λ comprimento de onda λ_B comprimento da onda de flexão massa específica ρ refletância à radiação solar da superfície de uma parede ρ_s coeficiente de transmissão sonora τ coeficiente de transmissão sonora de uma parede composta τ_c Φ umidade relativa do ar Φ_e umidade relativa do ar externo

LISTA DE FIGURAS

CAPÍTULO I
Figura 1.1 – Etapas de estudo para que as exigências de conforto térmico e acústico sejam atendidas no projeto de uma edificação
CAPÍTULO II
Figura 2.1 – Material poroso e material fibroso
Figura 2.2 – Alternativa para colocação de material fonoabsorvente
Figura 2.3 – Características típicas de materiais porosos
Figura 2.4 – Tempos de reverberação recomendados em 500 Hz para recintos
Figura 2.5 – Tempos de reverberação recomendados para outras frequências, como porcentagem do tempo de reverberação em 500 Hz
Figura 2.6 – Caminhos de transmissão sonora entre duas salas adjacentes
Figura 2.7 – Esquema de transmissão sonora através de paredes simples
Figura 2.8 – Curva típica de perda na transmissão sonora
Figura 2.9 – Modelo idealizado de painel sólido e homogêneo
Figura 2.10 – Fenômeno da coincidência
Figura 2.11 – Gráfico para determinação da frequência crítica de painéis
Figura 2.12 – Acoplamento do campo acústico no ar com o movimento de flexão do painel 36
Figura 2.13 – Estimativa da perda na transmissão sonora em painéis isotrópicos
Figura 2.14 – Estimativa da perda na transmissão sonora em painéis ortotrópicos
Figura 2.15 – Esquema de transmissão sonora através de paredes duplas
Figura 2.16 – Variação da PT em função da frequência para paredes duplas
Figura 2.17 – <i>PT</i> média em paredes duplas com diferentes distâncias entre painéis montados em caibros independentes
Figura 2.18 – Painéis fixados em perfis metálicos por meio de barras resilientes; fixação do painel no perfil metálico; detalhe dos parafusos acoplados à barra resiliente
Figura 2.19 – Fixação de painéis em linha; fixação pontual
Figura 2.20 – Gráfico para estimativa da <i>PT</i> em paredes duplas com painéis fixados no mesmo caibro ou perfil metálico
Figura 2.21 – Painéis justapostos e colados
Figura 2.22 – Gráfico para a determinação da PT de paredes compostas por dois elementos 51
Figura 2.23 – Perda na transmissão sonora direta e por flancos entre duas salas adjacentes 52
CAPÍTULO III
Figura 3.1 – Carta bioclimática adaptada
Figura 3.2 – Mapa do zoneamento bioclimático brasileiro; sua sobreposição com o mapa
político brasileiro

CAPÍTULO IV

Figura 4.1 – Montagem de fechamento vertical em placa cimentícia	72
Figura 4.2 – Montagem do sistema de fechamento vertical em gesso acartonado	75
Figura 4.3 – Colocação de painéis de pré-moldado de concreto em fachada	76
Figura 4.4 – Painel de pré-moldado de concreto maciço; painel de pré-moldado com ala poliestireno	
Figura 4.5 – Montagem de fechamento horizontal em painéis de concreto celular autocla	
Figura 4.6 – Painel de poliestireno expandido (EPS)	
Figura 4.7 – Edificação em estrutura metálica com sistema de fechamento em alvervidro	
Figura 4.8 – Tijolos cerâmicos mis utilizados em alvenaria: maciço comum, furado, lan aparente e especial	
Figura 4.9 – Painéis duplos e suas respectivas camadas	
Figura 4.10 – Alvenaria de tijolo cerâmico	85
CAPÍTULO V	
Figura 5.1 – Fluxograma dos principais itens para a avaliação do desempenho térm acústico de uma edificação segundo o método proposto	
CAPÍTULO VI	
Figura 6.1 – Desenhos em perspectiva, planta baixa e perspectiva do Edifício I gerada ESP-r	
Figura 6.2 – Foto da fachada leste, planta baixa e perspectiva geradas pelo ESI Edifício II	
Figura 6.3 – Perspectiva desenhada, foto e perspectiva gerada pelo Esp-r mostrando o indo Edifício III	
Figura 6.4 – Coeficientes de absorção sonora dos materiais das paredes aplicadas no indos recintos das edificações	
Figura 6.5 – Tempo de reverberação e temperatura interna para fechamentos de presimples e em multicamadas de placa cimentícia e de alvenaria – dormitório	-
Figura 6.6 – Tempo de reverberação e temperatura interna para fechamentos de primples e em multicamadas de gesso acartonado e de alvenaria – dormitório	
Figura 6.7 – Tempo de reverberação e temperatura interna para fechamentos de presimples e em multicamadas de pré-moldado de concreto e de alvenaria – dormitório	
Figura 6.8 – Tempo de reverberação e temperatura interna para fechamentos de primples e em multicamadas de concreto celular autoclavado e de alvenaria – dormitório	
Figura 6.9 – Tempo de reverberação e temperatura interna para fechamentos de primples e em multicamadas de poliestireno expandido e de alvenaria – dormitório	•

Figura 6.10 – Tempo de reverberação e temperatura interna para fechamentos de painéis simples e em multicamadas de placa cimentícia com gesso acartonado e de alvenaria – dormitório
Figura 6.11 – Tempo de reverberação e temperatura interna para fechamentos de painéis simples e em multicamadas de pré-moldado de concreto com placa cimentícia e gesso acartonado e de alvenaria – dormitório
Figura 6.12 – Tempo de reverberação e temperatura interna para fechamentos de painéis simples e em multicamadas de concreto celular autoclavado com placa cimentícia e gesso acartonado e de alvenaria – dormitório
Figura 6.13 – Tempo de reverberação e temperatura interna para fechamentos de painéis simples e em multicamadas de poliestireno expandido com placa cimentícia e gesso acartonado e de alvenaria – dormitório
Figura 6.14 – Tempo de reverberação e temperatura interna para fechamentos de painéis simples e em multicamadas de placa cimentícia e de alvenaria – sse4
Figura 6.15 – Tempo de reverberação e temperatura interna para fechamentos de painéis simples e em multicamadas de gesso acartonado e de alvenaria – sse4
Figura 6.16 – Tempo de reverberação e temperatura interna para fechamentos de painéis simples e em multicamadas de pré-moldado de concreto e de alvenaria – sse4
Figura 6.17 – Tempo de reverberação e temperatura interna para fechamentos de painéis simples e em multicamadas de concreto celular autoclavado e de alvenaria – sse4
Figura 6.18 – Tempo de reverberação e temperatura interna para fechamentos de painéis simples e em multicamadas de poliestireno expandido e de alvenaria – sse4
Figura 6.19 – Tempo de reverberação e temperatura interna para fechamentos de painéis simples e em multicamadas de placa cimentícia com gesso acartonado e de alvenaria – sse4
Figura 6.20 – Tempo de reverberação e temperatura interna para fechamentos de painéis simples e em multicamadas de pré-moldado de concreto com placa cimentícia e gesso acartonado e de alvenaria – sse4
Figura 6.21 – Tempo de reverberação e temperatura interna para fechamentos de painéis simples e em multicamadas de concreto celular autoclavado com placa cimentícia e gesso acartonado e de alvenaria – sse4
Figura 6.22 – Tempo de reverberação e temperatura interna para fechamentos de painéis simples e em multicamadas de poliestireno expandido com placa cimentícia e gesso acartonado e de alvenaria – sse4
Figura 6.23 – Tempo de reverberação em função do tempo pelos métodos de Sabine, Millington, Eyring e Arau-Puchades para fechamentos de painéis em multicamadas de placa cimentícia – sse4
Figura 6.24 – Tempo de reverberação em função do tempo pelos métodos de Sabine, Millington, Eyring e Arau-Puchades para fechamentos de painéis em multicamadas de gesso acartonado – sse4

Figura 6.25 – Tempo de reverberação em função do tempo pelos métodos de Sabine, Millington, Eyring e Arau-Puchades para fechamentos de painéis em multicamadas de prémoldado de concreto – sse4
Figura 6.26 – Tempo de reverberação em função do tempo pelos métodos de Sabine, Millington, Eyring e Arau-Puchades para fechamentos de painéis em multicamadas de concreto celular autoclavado – sse4
Figura 6.27 – Tempo de reverberação em função do tempo pelos métodos de Sabine, Millington, Eyring e Arau-Puchades para fechamentos de painéis em multicamadas de poliestireno expandido – sse4
Figura 6.28 — Tempo de reverberação em função do tempo pelos métodos de Sabine, Millington, Eyring e Arau-Puchades para fechamentos de painéis em multicamadas de placa cimentícia e gesso acartonado — sse4
Figura 6.29 – Tempo de reverberação em função do tempo pelos métodos de Sabine, Millington, Eyring e Arau-Puchades para fechamentos de painéis em multicamadas de prémoldado de concreto e placa cimentícia – sse4
Figura 6.30 – Tempo de reverberação em função do tempo pelos métodos de Sabine, Millington, Eyring e Arau-Puchades para fechamentos de painéis em multicamadas de prémoldado de concreto e gesso acartonado – sse4
Figura 6.31 — Tempo de reverberação em função do tempo pelos métodos de Sabine, Millington, Eyring e Arau-Puchades para fechamentos de painéis em multicamadas de concreto celular autoclavado e placa cimentícia — sse4
Figura 6.32 – Tempo de reverberação em função do tempo pelos métodos de Sabine, Millington, Eyring e Arau-Puchades para fechamentos de painéis em multicamadas de concreto celular autoclavado e gesso acartonado – sse4
Figura 6.33 – Tempo de reverberação em função do tempo pelos métodos de Sabine, Millington, Eyring e Arau-Puchades para fechamentos de painéis em multicamadas de poliestireno expandido e placa cimentícia – sse4
Figura 6.34 – Tempo de reverberação em função do tempo pelos métodos de Sabine, Millington, Eyring e Arau-Puchades para fechamentos de painéis em multicamadas de poliestireno expandido e gesso acartonado – sse4
Figura 6.35 – Tempo de reverberação em função do tempo pelos métodos de Sabine, Millington, Eyring e Arau-Puchades para fechamentos de alvenaria – sse4
Figura 6.36 – Tempo de reverberação em função da frequência pelo método de Sabine para fechamentos de painéis em multicamadas, com lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC – sse4
Figura 6.37 – Tempo de reverberação em função da frequência pelo método de Millington para fechamentos de painéis em multicamadas, com lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC – sse4
Figura 6.38 – Tempo de reverberação em função da frequência pelo método de Eyring para fechamentos de painéis em multicamadas, com lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC – sse4

Figura 6.39 – Tempo de reverberação em função da frequência pelo método de Arau-Puchades para fechamentos de painéis em multicamadas, com lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC – sse4
Figura 6.40 – Temperatura interna para fechamentos de painéis em multicamadas, sem lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC – auditório – V_1
Figura 6.41 – Temperatura interna para fechamentos de painéis em multicamadas, com lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC – auditório – V_1
Figura 6.42 – Temperatura interna para fechamentos de painéis em multicamadas, sem lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC – auditório – V_2
Figura 6.43 – Temperatura interna para fechamentos de painéis em multicamadas, com lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC – auditório – V_2
Figura 6.44 – Temperatura interna para fechamentos de painéis em multicamadas, sem lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC – auditório – V_3
Figura 6.45 – Temperatura interna para fechamentos de painéis em multicamadas, com lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC – auditório – V_3
Figura 6.46 – Tempo de reverberação em função da frequência pelos métodos de Sabine, Eyring e Millington para fechamento de painéis em multicamadas de placa cimentícia com lã de vidro – auditório
Figura 6.47 – Tempo de reverberação em função da frequência pelos métodos de Sabine, Eyring e Millington para fechamento de painéis em multicamadas de gesso acartonado com lã de vidro – auditório
Figura 6.48 – Tempo de reverberação em função da frequência pelos métodos de Sabine, Eyring e Millington para fechamento de painéis em multicamadas de pré-moldado de concreto com lã de vidro – auditório
Figura 6.49 – Tempo de reverberação em função da frequência pelos métodos de Sabine, Eyring e Millington para fechamento de painéis em multicamadas de concreto celular autoclavado com lã de vidro – auditório
Figura 6.50 – Tempo de reverberação em função da frequência pelos métodos de Sabine, Eyring e Millington para fechamento de painéis em multicamadas de poliestireno expandido com lã de vidro – auditório
Figura 6.51 – Tempo de reverberação em função da frequência pelos métodos de Sabine, Eyring e Millington para fechamento de alvenaria – auditório
Figura 6.52 – Absorção sonora devido ao ar para as frequências de 500 Hz, 1000 Hz e 2000 Hz para os fechamentos de painéis em multicamadas, com lã de vidro, de placa cimentícia, gesso acartonado, pré-moldado de concreto, concreto celular autoclavado, poliestireno expandido e de alvenaria, para V_1 , V_2 e V_3

CAPÍTULO VII

Figura 7.1 – Tempo de reverberação (dormitório) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de placa cimentícia e de alvenaria 140 Figura 7.2 – Tempo de reverberação (dormitório) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de gesso acartonado e de alvenaria 140

Figura 7.3 – Tempo de reverberação (dormitório) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de pré-moldado de concreto e de alvenaria
Figura 7.4 – Tempo de reverberação (dormitório) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de concreto celular autoclavado e de alvenaria
Figura 7.5 – Tempo de reverberação (dormitório) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de poliestireno expandido e de alvenaria
Figura 7.6 – Tempo de reverberação (dormitório) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de placa cimentícia, com gesso acartonado, e de alvenaria
Figura 7.7 – Tempo de reverberação (dormitório) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de pré-moldado de concreto, com placa cimentícia e gesso acartonado, e de alvenaria
Figura 7.8 – Tempo de reverberação (dormitório) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de concreto celular autoclavado, com placa cimentícia e gesso acartonado, e de alvenaria
Figura 7.9 – Tempo de reverberação (dormitório) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de poliestireno expandido, com placa cimentícia e gesso acartonado, e de alvenaria
Figura 7.10 – Tempo de reverberação (sse4) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de placa cimentícia e de alvenaria
Figura 7.11 – Tempo de reverberação (sse4) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de gesso acartonado e de alvenaria
Figura 7.12 – Tempo de reverberação (sse4) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de pré-moldado de concreto e de alvenaria
Figura 7.13 – Tempo de reverberação (sse4) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de concreto celular autoclavado e de alvenaria 146
Figura 7.14 – Tempo de reverberação (sse4) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de poliestireno expandido e de alvenaria
Figura 7.15 – Tempo de reverberação (sse4) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de placa cimentícia, com gesso acartonado, e de alvenaria
Figura 7.16 – Tempo de reverberação (sse4) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de pré-moldado de concreto, com placa cimentícia e gesso acartonado, e de alvenaria
Figura 7.17 – Tempo de reverberação (sse4) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de concreto celular autoclavado, com placa cimentícia e gesso acartonado, e de alvenaria

Figura 7.18 – Tempo de reverberação (sse4) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de poliestireno expandido, com placa cimentícia e gesso acartonado, e de alvenaria
Figura 7.19 – Tempo de reverberação (auditório – V_1) e perda na transmissão sonora para fechamentos de painéis em multicamadas, sem lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC
Figura 7.20 – Tempo de reverberação (auditório – V_1) e perda na transmissão sonora para fechamentos de painéis em multicamadas, com lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC
Figura 7.21 – Tempo de reverberação (auditório – V_2) e perda na transmissão sonora para fechamentos de painéis em multicamadas, sem lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC
Figura 7.22 – Tempo de reverberação (auditório – V ₂) e perda na transmissão sonora para fechamentos de painéis em multicamadas, com lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC
Figura 7.23 – Tempo de reverberação (auditório – V_3) e perda na transmissão sonora para fechamentos de painéis em multicamadas, sem lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC
Figura 7.24 – Tempo de reverberação (auditório – V ₃) e perda na transmissão sonora para fechamentos de painéis em multicamadas, com lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC
Figura 7.25 – Perda na transmissão sonora para fixação LL, LP e PP para painéis em multicamadas de placa cimentícia e para alvenaria
Figura 7.26 – Perda na transmissão sonora para fixação LL, LP e PP para painéis em multicamadas de gesso acartonado e para alvenaria
Figura 7.27 – Perda na transmissão sonora para fixação LL, LP e PP para painéis em multicamadas de pré-moldado de concreto e para alvenaria
Figura 7.28 – Perda na transmissão sonora para fixação LL, LP e PP para painéis em multicamadas de concreto celular autoclavado e para alvenaria
Figura 7.29 – Perda na transmissão sonora para fixação LL, LP e PP para painéis em multicamadas de poliestireno expandido e para alvenaria
Figura 7.30 – Perda na transmissão sonora para fixação LL, LP e PP para painéis em multicamadas de placa cimentícia, com gesso acartonado, e para alvenaria
Figura 7.31 – Perda na transmissão sonora para fixação LL, LP e PP para painéis em multicamadas de pré-moldado de concreto, com placa cimentícia e gesso acartonado, e para alvenaria
Figura 7.32 – Perda na transmissão sonora para fixação LL, LP e PP para painéis em multicamadas de concreto celular autoclavado, com placa cimentícia e gesso acartonado, e para alvenaria
Figura 7.33 – Perda na transmissão sonora para fixação LL, LP e PP para painéis em multicamadas de poliestireno expandido, com placa cimentícia e gesso acartonado, e para alvenaria

CAPÍTULO VIII

Figura 8.1 – Dispersão da temperatura interna proporcionada pelos fechame	_
multicamadas com lã de vidro e de alvenaria de tijolo cerâmico – dormitóri	
Figura 8.2 – Dispersão do tempo de reverberação proporcionado pelos fech	-
em multicamadas com lã de vidro e de alvenaria de tijolo cerâmico – dormi	
Figura 8.3 – Dispersão da temperatura interna proporcionada pelos fechame multicamadas com lã de vidro e de alvenaria de tijolo cerâmico – sse4	-
Figura 8.4 – Dispersão do tempo de reverberação proporcionado pelos fech em multicamadas com lã de vidro e de alvenaria de tijolo cerâmico – sse 4 .	-
Figura 8.5 – Dispersão da temperatura interna proporcionada pelos fechame multicamadas com lã de vidro e de alvenaria de tijolo cerâmico – auditório	1
Figura 8.6 – Dispersão do tempo de reverberação proporcionado pelos fech em multicamadas com lã de vidro e de alvenaria de tijolo cerâmico – audi	itório (V ₁ , V ₂ e V ₃)
Figura 8.7 – Dispersão da perda na transmissão sonora proporcionada pel painéis em multicamadas com lã de vidro e de alvenaria de tijolo cerâmico	los fechamentos de
APÊNDICE B	
Figura A.1 – Página inicial do ESP-r	177
Figura A.2 – Menu Database Maintenance	178
Figura A.3 – Abertura ou criação de um projeto no ESP-r	179
Figura A.4 – Criação de um projeto no ESP-r	179
Figura A.5 – Menu browse/edit/simulate	180
Figura A.6 – Menu composition	181
Figura A.7 – Menu geometry & attribution (destacando uma porta)	182
Figura A.8 – Menu construction materials	183
Figura A.9 – Menu operational details	183
Figura A.10 – Menu simulate	184
Figura A.11 – Resultados de uma simulação térmica	185
Figura A.12 – Menu do módulo acústico	186
Figura A.13 – Resultados de uma simulação no módulo acústico	187

LISTA DE TABELAS

CAPITULO II
Tabela 2.1. Coeficientes de absorção e áreas de absorção equivalente para o cálculo do tempo de reverberação
Tabela 2.2. Coeficientes de absorção sonora do ar (m)
Tabela 2.3. Fatores de amortecimento internos típicos de materiais estruturais, à temperatura ambiente, em movimento vibratório de pequena amplitude e frequências na faixa de áudio . 39
Tabela 2.4 – Coordenadas dos pontos A, B, C e D
CAPÍTULO III
Tabela 3.1. Valores médios recomendados de resistências térmicas superficiais interna (<i>Rsi</i>) e
externa (<i>Rse</i>)
Tabela 3.2. Transmitância térmica de paredes externas
Tabela 3.3. Capacidade térmica de paredes externas
Tabela 3.4. Áreas mínimas de aberturas para ventilação
Tabela 3.5. Critérios de coberturas quanto à transmitância térmica
Tabela 3.6. Critério de avaliação de desempenho térmico para condições de verão
Tabela 3.7. Critério de avaliação de desempenho térmico para condições de inverno 64
Tabela 3.8. Níveis de critérios de avaliação (NCA) para ambientes externos, em dB(A) 66
Tabela 3.9. Níveis de ruído para conforto acústico em alguns ambientes internos, em dB(A).66
Tabela 3.10. Valores mínimos recomendados de $D_{nT,w}$ dos componentes construtivos, para ensaio de campo
Tabela 3.11. Valores mínimos recomendados de PT_w dos componentes construtivos, para ensaio de laboratório
CAPÍTULO IV
Tabela 4.1. Relação entre espessuras das placas cimentícias e sua aplicação
Tabela 4.2. Caracterização dos painéis avaliados
Tabela 4.3. Nome, espessura (h) , massa específica superficial (M) , rigidez à flexão (B_s) e
frequência crítica (f_c) dos painéis de fechamento simples e da alvenaria de tijolo cerâmico 85
Tabela 4.4. Nome, massa específica superficial dos painéis $(M_1 \in M_2)$, distância entre painéis
ou largura da cavidade (d), frequência crítica dos painéis (f_{c1} e f_{c2}), menor frequência de ressonância do conjunto massa-ar-massa (f_0) e fatores de amortecimento interno dos painéis
$(\eta_1 e \eta_2)$
CAPÍTULO VI
Tabela 6.1. Elementos de fechamento fixados nos Edifícios I, II e III
Tabela 6.2. Características geométricas das zonas térmicas das edificações modelo 97
Tabela 6.3. Propriedades de massa e térmicas dos elementos dos sistemas de fechamento. 98

Tabela 6.4. Transmitâncias térmicas dos fechamentos (U)	98
Tabela 6.5. Outros dados climáticos utilizados na avaliação (valores médios)	99
Tabela 6.6. Coeficientes de absorção sonora (α_i) dos materiais aplicados nos ambientes	
Tabela 6.7. Tempo de reverberação (TR) para 1000 Hz, sala de seminários sse4, Edifício I	I.123
Tabela 6.8. Temperaturas e umidades relativas internas (T_i e Φ_i) resultantes nos três voludo auditório, Edifício III, para temperatura e umidade relativa externas (T_e e Φ_e) igua 27,5 °C e 57,5 %, respectivamente	ais a
Tabela 6.9. Menores valores de tempo de reverberação, para o auditório, considerand temperatura e umidade relativas externas (T_e e Φ_e) iguais a 27,5 °C e 57,5 %, respectivam	ente
Tabela 6.10. Coeficientes de absorção sonora do ar x 1000 (m), para V ₁ , V ₂ e V ₃	
Tabela 6.11. Comparação entre a absorção sonora do ar e a área total de absorção fechamentos do auditório para a frequência de 1000 Hz	
Tabela 6.12. Comparação entre a absorção sonora do ar e a área total de absorção fechamentos do auditório para a frequência de 4000 Hz	
CAPÍTULO VII	
Tabela 7.1. Perdas na transmissão sonora, calculadas pela Lei da Massa para as frequência banda de oitava entre 125 e 4000 Hz	
Tabela 7.2. Perdas na transmissão sonora dos os pontos A e B, obtidas via método gráfico valores das quedas das perdas na transmissão sonora dos painéis simples	
Tabela 7.3. Perda na transmissão sonora (dB) para os pontos A, B e C	138
Tabela 7.4. Coordenadas dos pontos A, B e C e abscissa do ponto D calculadas, e ordenad ponto D determinada graficamente	
CAPÍTULO VIII	
Tabela 8.1. PT e TR (Sabine) dos fechamentos em multicamadas e da ATC, e T_i das z	
térmicas estudadas dos Edifícios I, II e III, às 14h30 e 1000 Hz	161
APÊNDICE B	
Tabela B.1. T_i (°C) e TR (s) - Edifício I - dormitório - 1 ren/h; Sabine (1000 Hz)	188
Tabela B.2. T_i (°C) e TR (s) - Edifício II - sse4 - 5 ren/h; Sabine (1000 Hz)	190
Tabela B.3. TR (s) - Edifício II - sse4 - 5 ren/h; Sabine, Millington, Eyring e Arau-Puch (1000 Hz)	
Tabela B.4. TR (s) x frequência (Hz) - Edifício II - sse4 - 5 ren/h; 14h30	194
Tabela B.5. T_i (°C) - Edifício III - auditório - 1 ren/h	
Tabela B.6. TR (s) x frequência (Hz) - Edifício III - auditório - 14h30	
Tabela B.7. Absorção sonora devida ao ar (m²) x frequência (Hz) - Edifício III - auditó 14h30	

1. INTRODUÇÃO

O projeto de edificações é um processo complexo que envolve muitas fases e agentes. Nesse processo devem interagir projetistas, engenheiros, construtores e usuários de modo a assegurar um produto final que tenha qualidade e desempenho. Em um esforço conjunto, modelos de avaliação e ferramentas de análise vêm sendo continuamente desenvolvidos em busca de soluções, materiais e métodos que possam atender a diferentes exigências de usuários em edificações de usos variados (GRAÇA; KOWALTOWSKI; PETRECHE, 2005; GOMES, 2007).

De modo geral, a construção industrializada apresenta grande espaço para desenvolvimento, prometendo racionalização e atendimento às exigências de economia de energia e conforto humano, apontando para projetos que apresentam um desempenho global adequado. No entanto, a rapidez de montagem desses sistemas construtivos exige a aplicação de sistemas de fechamento que possuam a mesma filosofia de pré-fabricação e velocidade de construção. Assim, a aplicação de sistemas de fechamento industrializados apresenta-se como solução racional para esse tipo de construção, no que diz respeito à otimização de prazos, redução de mão de obra, diminuição de desperdícios e obtenção de qualidade final. Porém, sua utilização exige inovações tecnológicas e visão sistêmica da construção que deve começar ainda na fase de projeto, quando os fechamentos e suas interfaces, entre si e com a estrutura, devem ser definidos procurando-se atender a critérios de desempenho determinados. Vários painéis préfabricados são encontrados no mercado nacional da construção civil, tornando-se necessário um estudo mais detalhado de seu desempenho global (SALES; NEVES; SOUZA, 2001).

O desempenho global de uma edificação é influenciado pelo conforto que ela oferece a seus usuários e está associado às condições térmicas internas (temperatura e umidade do ar), às condições internas de iluminação e de isolamento de ruído, e vem de uma adequação do sistema de fechamento externo e interno da edificação ao clima local.

Considerando que avaliações subjetivas de conforto térmico podem ser afetadas pelo ambiente acústico e que a questão do ruído é mais difícil de controlar, é de interesse de projetistas elaborar projetos cujas edificações resultantes proporcionem equilíbrio entre conforto térmico e acústico no interior dos ambientes (PELLERIN; CANDAS, 2003; TILLER et al., 2010).

Sendo assim, uma análise global do desempenho de uma edificação durante a fase de concepção e projeto tende a evitar que intervenções sejam necessárias durante o seu uso, o que implica em economia e bem estar para os usuários. Nessa fase, buscando-se obter economia no condicionamento do ambiente interno, deve-se procurar tirar o máximo de proveito das condições naturais locais de insolação, ventilação, iluminação e isolamento de ruídos. São, então, dados importantes a considerar: a orientação solar, a dimensão de aberturas de ventilação e iluminação naturais e a seleção correta de materiais, que devem ser apropriados e devem considerar as particularidades de cada região e de seu clima (KRÜGER; ZANNIN, 2004).

O desempenho térmico e acústico de um ambiente depende da combinação de vários fatores, dentre os quais se destacam o posicionamento do edifício e suas dependências, a escolha e execução de paredes, pisos, tetos e esquadrias e a especificação de equipamentos e instalações, que são possíveis fontes de calor e/ou ruído. Todos os componentes são partes integrantes da edificação que funciona como um todo, não sendo possível determinar qual é mais relevante. No entanto, pode-se destacar a importância da especificação dos sistemas de fechamento verticais e horizontais, cuja constituição e montagem determinam, em grande parte, os níveis de desempenho térmico e acústico no ambiente construído (SALES, 2001; FRANSOZO, 2003; RIBAS, 2006).

Quanto ao conforto térmico, que pode ser alcançado pelo controle da influência de elementos climáticos, a norma NBR 15575 (ABNT, 2013) explicita que a edificação deve reunir características que atendam às exigências de conforto térmico dos usuários, considerando-se o entorno e as características bioclimáticas definidas na norma NBR 15220 (ABNT, 2005a). A norma NBR 15575 (ABNT, 2013) considera que o desempenho térmico da edificação depende do comportamento interativo entre fachada, cobertura e piso, e fixa requisitos mínimos a serem atendidos pelos elementos construtivos de edificações habitacionais. São estabelecidas condições térmicas, que devem ocorrer no interior da edificação, melhores ou iguais às do ambiente externo, à sombra, para o dia típico de verão, e que propiciem conforto térmico no interior da edificação, no dia típico de inverno. São mostrados então valores máximos e mínimos diários de temperatura do ar interior de recintos de permanência prolongada, para os dias típicos de verão e de inverno, respectivamente.

Em busca de proporcionar aos usuários da edificação um ambiente interno confortável independente das condições externas, com o mínimo de consumo de energia, tanto para a

que a temperatura interna é primordialmente influenciada pelos parâmetros climáticos externos, representados pela radiação solar e pela temperatura externa, e pelas cargas internas vindas de atividades humanas, lâmpadas e equipamentos (AKUTSU, 1998).

Quanto ao conforto acústico, a norma NBR 15575 (ABNT, 2013) estabelece que uma edificação deve apresentar isolamento acústico adequado dos sistemas de fechamento externos, no que se refere aos ruídos aéreos e ruídos gerados por impactos ou equipamentos, que sejam provenientes do exterior e entre ambientes no interior da edificação. A norma NBR 10151 (ABNT, 2000a), que fixa condições exigíveis para a avaliação da aceitabilidade do ruído em comunidades, fixa também um método para a medição de ruído, para a aplicação de correções nos níveis medidos e uma comparação dos níveis corrigidos, com um critério que leva em consideração vários fatores ambientais. E a norma NBR 10152 (ABNT, 2000b) fixa níveis de ruído compatíveis com o conforto acústico em ambientes diversos de uma edificação.

No caso dos fechamentos industrializados, por serem mais leves e de montagem rápida, a capacidade de isolamento acústico deve ser avaliada, posto que os painéis em geral possuem menor massa, o que pode significar menor capacidade de isolamento de ruído, levando a condições de conforto desfavoráveis (SALES, 2001; BASTOS, 2004; GARCIA, 2004).

Dessa forma, as propriedades térmicas e acústicas dos materiais podem apresentar comportamento contraditório, pois geralmente materiais que proporcionam bom desempenho acústico, com boa isolação sonora, têm baixa inércia térmica. Por esse fato, é importante a procura por materiais que mostrem soluções integradas de comportamento adequado quanto a esses dois quesitos, visto que a redução de massa e a montagem de sistemas leves trazem à tona a preocupação com o isolamento sonoro dos ambientes (CITHERLET; MACDONALD, 2003).

1.1. Objetivo

O objetivo desse trabalho é propor um método de avaliação integrada do desempenho térmico e acústico para ser aplicado em sistemas de fechamento industrializados, utilizados em edificações estruturadas em aço no Brasil.

1.2. Justificativa

Além dos sistemas estrutural e construtivo, a eficiência global do ambiente construído é fator importante no projeto e construção de qualquer edificação, sendo que seu desempenho global está relacionado ao conforto interno que ela oferece a seus usuários. Um projeto arquitetônico deve buscar o aproveitamento das condições climáticas locais, considerando o entorno, e associá-las à finalidade da edificação, amenizando ao máximo o consumo de energia, aproveitando de forma eficiente a iluminação e ventilação naturais e proporcionando isolamento sonoro adequado. Tal edificação, originada por um projeto no qual os diversos sistemas são gerenciados de forma integrada e com o emprego de materiais e sistemas construtivos corretos, que ofereça aos seus usuários rapidez de execução, qualidade, conforto, segurança e economia, bem como, fácil manutenção e operação, configura-se como Edifício Inteligente (ORAL; YENER; BAYAZIT, 2004).

Encontram-se no mercado vários painéis de fechamento, e verifica-se que há uma carência de conhecimento tecnológico a respeito das técnicas de execução e das características de desempenho térmico e acústico desses sistemas de fechamento, tanto por parte das empresas construtoras, como dos próprios fabricantes e projetistas. É relevante o domínio das características técnicas e de desempenho térmico e acústico dos componentes desses sistemas de fechamento, pois o emprego de modo incorreto pode ocasionar a elevação do custo do edifício, o desconforto humano no ambiente construído e a alta incidência de problemas patológicos, resultando em resistência à utilização desses produtos em empreendimentos posteriores.

Uma avaliação de desempenho, que verifique as condições do ambiente interno de uma habitação em relação ao seu conforto térmico e acústico, ainda em fase de projeto, visa garantir uma edificação com boa resposta nesse sentido e que consuma um mínimo de energia sem necessidade de interferências construtivas posteriores (GOMES, 2007).

A análise térmica e acústica de uma edificação objetiva buscar soluções que proporcionem uma melhor qualidade ambiental. Um espaço com resposta acústica aceitável pode levar a soluções de sistemas de fechamento que não possuam capacidade térmica capaz de oferecer conforto térmico adequado. Em razão dessa interdependência, é imperativo obter um equilíbrio entre a absorção sonora e a inércia térmica dos elementos que compõem os fechamentos. Dessa forma, os resultados dessa pesquisa permitirão avaliar os parâmetros

relevantes na definição de sistemas de fechamento apropriados para o clima local e o entorno, em termos de desempenho térmico e acústico, analisando a eficiência das propriedades térmicas (massa térmica) e acústicas (absorção acústica) dos sistemas de fechamento em multicamadas.

1.3. Metodologia

A escolha dos sistemas de fechamento, por estarem diretamente ligados à imagem e ao conforto térmico e acústico de qualquer edificação, deve ser feita na fase de projeto, que é uma das etapas mais importantes do processo construtivo.

Seguindo a proposta desse trabalho, são estudados alguns painéis de fechamento, tais como os painéis constituídos por placas cimentícias, gesso acartonado, pré-moldado de concreto, concreto celular autoclavado, poliestireno expandido e combinações desses, formando painéis duplos, intermediados por camadas de ar, sem e com material isolante nas cavidades.

Além desses sistemas em multicamadas, inclui-se na avaliação o sistema de fechamento em alvenaria convencional de tijolo cerâmico, com a finalidade de se fazer uma comparação dos novos sistemas com a construção tradicional.

Para uma escolha de fechamento adequada, a avaliação de desempenho térmico e acústico pode ser realizada ainda na etapa de pré-projeto via simulação numérica, que constitui ferramenta importante para uma análise mais global, ou de uma forma mais simplificada avaliando as propriedades dos painéis seguindo os requisitos sugeridos pelas normas NBR 15220 (ABNT, 2005a) e NBR 15575 (ABNT, 2013).

Na Figura 1.1 estão mostradas as etapas de estudo para que as exigências de conforto térmico e acústico sejam atendidas no projeto de uma edificação.

A avaliação de desempenho térmico é feita por meio de simulação numérica dos parâmetros climáticos (temperatura e umidade) considerando a resposta global da edificação como um sistema integrado e não somente dos elementos construtivos isolados. Essa avaliação permite verificar, de forma dinâmica, as condições do ambiente interno de uma edificação, apontando soluções que podem fornecer uma resposta térmica conveniente dessa edificação. A avaliação de desempenho acústico permite estabelecer uma possível necessidade de controle de ruído ainda na fase de projeto, trazendo como vantagem a possibilidade de se escolher o processo

que poderá reduzir ou mesmo evitar a necessidade de tal controle.

Em uma avaliação da resposta global do projeto arquitetônico proposto de uma edificação são contemplados os seguintes itens:

- 1. Caracterização das exigências humanas de conforto térmico e de conforto acústico;
- 2. Caracterização das condições típicas de exposição ao clima e ao ruído externo;
- 3. Caracterização da edificação e sua ocupação, observando-se seu projeto arquitetônico, composição dos materiais, elementos de fechamento e de cobertura e demais componentes da edificação, bem como as condições de ocupação.

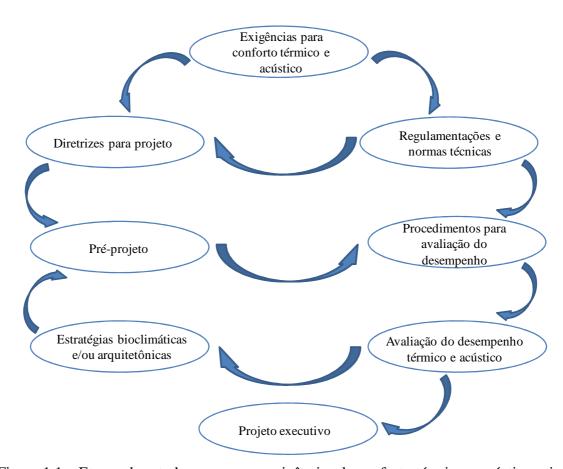


Figura 1.1 – Etapas de estudo para que as exigências de conforto térmico e acústico sejam atendidas no projeto de uma edificação

Na presente pesquisa, propõe-se que a análise do desempenho térmico dos sistemas de fechamento seja feita por meio do programa computacional de simulação ESP-r (*Energy Simulation Program – research*), considerando-se os fechamentos propostos aplicados em três modelos de edificação. Esse *software* permite realizar simulações numéricas do efeito térmico dos elementos de fechamento, traduzido em temperaturas e umidades do ar interno. Essas

temperaturas e umidades do ar interno contribuem para o cálculo da absorção sonora devida ao ar, que é utilizada na determinação de um parâmetro aplicado na análise de desempenho acústico denominado de tempo de reverberação, integrando-se, assim, as análises térmica e acústica.

Posto que o tempo de reverberação e a perda na transmissão sonora que ocorre com o som através das paredes são parâmetros que podem indicar a qualidade do som em um espaço fechado, propõe-se que o desempenho acústico seja avaliado:

- pelo cálculo do tempo de reverberação, aplicando-se os métodos de Sabine, Eyring,
 Millington e Arau-Puchades utilizando formulação empírica e o módulo acústico do software ESP-r (CITHERNET, 2001; ARAU-PUCHADES, 1988);
- pela estimativa da perda na transmissão sonora, que ocorre através dos materiais sólidos componentes das paredes que separam dois recintos, aplicando-se o método gráfico simplificado apresentado por Sharp (1973) e abordado por Bies-Hansen (2003) e Bistafa (2006).

É verificado, então, como os ambientes internos das edificações atendem a um conjunto de requisitos estabelecidos em função das exigências humanas de conforto térmico e acústico.

Diante disso, o desenvolvimento desse trabalho abrange as seguintes etapas:

- estudo da eficiência das propriedades térmicas (massa térmica) e acústicas (absorção acústica) dos sistemas de fechamento industrializados propostos;
- estudo da eficiência das propriedades térmicas (massa térmica) e acústicas (absorção acústica) do sistema de fechamento constituído por alvenaria convencional;
- simulação térmica da edificação aplicando-se os fechamentos propostos;
- cálculo do tempo de reverberação que utiliza os valores de temperatura e umidade obtidos na simulação numérica, por meio de formulação empírica e simulação;
- estimativa da perda na transmissão sonora do sistema de fechamento, aplicando-se a Lei da Massa e método gráfico simplificado;
- comparação dos resultados obtidos para os sistemas de fechamento industrializados e os resultados obtidos para a alvenaria convencional;

- verificação se os requisitos mínimos previstos na norma NBR 15575 (ABNT, 2013) são atendidos pelos sistemas de fechamento propostos;
- análise e discussão dos resultados.

1.4. Estrutura do trabalho

Para cumprir o objetivo da pesquisa, essa tese está organizada em mais seis capítulos, além desse capítulo introdutório, as referências, um anexo e dois apêndices. Nesse primeiro capítulo, são feitas algumas considerações sobre o desempenho de uma edificação e a construção metálica, focando conforto térmico e acústico. Aqui são apresentados ainda o objetivo e a justificativa da pesquisa bem como a metodologia utilizada para a sua realização.

No Capítulo 2, é abordado o tema acústica em ambientes fechados e apresentados conceitos e formulações relevantes para o entendimento desse estudo, que são: absorção sonora e coeficiente de absorção sonora, campo reverberante e tempo de reverberação, transmissão sonora e perda na transmissão sonora de paredes simples e duplas, efeito das aberturas na perda na transmissão sonora de paredes e perda na transmissão sonora por flancos.

No Capítulo 3, o desempenho térmico e acústico de edificações é abordado, mostrando-se níveis mínimos de desempenho térmico e acústico para os elementos de uma edificação (fechamentos verticais, coberturas e pisos) exigidos pelas normas brasileiras.

No Capítulo 4, são descritos alguns painéis de fechamento verticais industrializados aplicados em edificações estruturadas em aço e o sistema de fechamento convencional em alvenaria de tijolo cerâmico, que são objeto de estudo na avaliação de desempenho térmico e acústico. Nesse capítulo também são apresentadas as propriedades e composições dos painéis formando sistemas em multicamadas.

No Capítulo 5, mostra-se como a metodologia proposta é aplicada com o auxílio do *software* ESP-r para as simulações da análise térmica e parte da análise acústica. Também é mostrado como é feita a avaliação acústica pelo cálculo do tempo de reverberação e pelo método gráfico. Ao final desse capítulo, é apresentado um fluxograma contendo os principais itens para a análise integrada do desempenho térmico e acústico de uma edificação pelo método proposto.

No Capítulo 6, é feita a aplicação da metodologia proposta em três edificações tomadas como estudos de caso, cujos fechamentos verticais são variados conforme aqueles descritos no Capítulo 4. São apresentados resultados e análises da avaliação do desempenho térmico, realizado por meio de simulações, e do desempenho acústico, por meio do cálculo do tempo de reverberação ou por simulações. Os resultados são mostrados em gráficos e tabelas e em seguida as análises.

No Capítulo 7, é feita a avaliação do desempenho acústico dos fechamentos estimando-se a perda na transmissão sonora através deles, por meio do método gráfico simplificado abordado no Capítulo 2. Os resultados são apresentados e analisados.

No Capítulo 8, é feita uma análise conjunta do desempenho térmico e acústico dos sistemas de fechamento estudados e são estabelecidas as considerações finais sobre os resultados obtidos e algumas sugestões para trabalhos futuros. Em seguida, são mostradas as referências bibliográficas utilizadas na pesquisa, o anexo e os apêndices.

2. ACÚSTICA EM AMBIENTES FECHADOS

O som é gerado pela variação da pressão ou da velocidade das moléculas em um meio compressível, resultando em uma transmissão de energia, e pode ser representado por uma série de compressões e rarefações do meio no qual ele se propaga. Cada rarefação e compressão juntas formam a onda acústica e a taxa de ocorrência da onda é a frequência (f), que é dada em ciclos por segundo ou Hertz (Hz). Na faixa de frequências entre 20 e 20000 Hz, as ondas de pressão no meio podem ser audíveis (GERGES, 2000; BIES; HANSEN, 2003).

O som desagradável ao ouvido humano, geralmente, é denominado de ruído ou barulho. Mas, um som ser desejável ou não é um fator subjetivo e depende do contexto. Ele pode ser agradável para uma pessoa e irritante para outra. Além disso, um ruído pode até ser necessário em certas ocasiões. Por exemplo, ele pode apontar um defeito em uma máquina, antes que ela se quebre. Algumas medidas de controle de ruído, tais como, enclausurar sua fonte (máquinas, equipamentos e outros), adicionar material que absorva o som no recinto e aumentar a perda na transmissão do som utilizando paredes duplas ou colocando amortecedores de escape, podem contribuir para sua redução no interior da edificação a um nível aceitável. A necessidade ou não de redução do ruído é determinada estabelecendo-se valores de referência, e o atendimento a esses valores visa proporcionar ao ambiente o isolamento sonoro ideal para a atividade ali desenvolvida (BIES; HANSEN, 2003).

Em um espaço fechado, a frequência e o nível do som, a distância e a posição relativa da fonte, bem como a forma de transmissão, influenciam no tipo de solução de conforto a ser adotada. A análise desses parâmetros informa se deve ser feito o isolamento do ambiente em relação ao seu entorno, ou o tratamento de suas superfícies internas visando à absorção do som produzido (FERREIRA, 2006).

A qualidade do som no recinto está diretamente relacionada ao conforto de seus usuários. O tempo de reverberação e a perda na transmissão sonora das paredes podem indicar essa qualidade. Dessa forma, são apresentados, nesse capítulo, conceitos e formulações sobre absorção sonora e coeficiente de absorção sonora, campo reverberante e tempo de reverberação, transmissão sonora e perda na transmissão sonora de paredes simples e duplas e efeito das aberturas na perda na transmissão sonora de paredes externas e divisórias internas.

2.1. Absorção sonora

A absorção sonora é uma característica inerente a cada material e representa sua capacidade de absorver a energia sonora, ocorrendo em graus variados. É determinada por meio de seu coeficiente de absorção sonora, α_i (adimensional), e caracteriza seu desempenho acústico. O coeficiente de absorção sonora é dado pela expressão:

$$\alpha_i = \frac{W_i - W_r}{W_i} \tag{2.1}$$

sendo W_i a potência sonora incidente; W_r a potência sonora refletida.

O valor de α_i varia entre 0 e 1, sendo que α_i = 1 representa a condição de que não existe reflexão (absorvedor ideal) e depende principalmente da frequência, do ângulo de incidência do som, do tipo de campo sonoro (difuso, ondas planas e outros), assim como da massa específica, espessura e estrutura interna do material. A representação de α variando com a frequência constitui a curva de absorção sonora do material, que em geral é expressa em banda de oitava ou em banda de terço de oitava.

O controle de ruído pode ser feito atuando-se diretamente na sua fonte emissora e, quando isso não é possível, um recurso alternativo é a utilização de materiais de absorção sonora para revestimento interno de paredes e dutos. Esses materiais devem ser permeáveis ao fluxo de ar e podem ser porosos, tais como a espuma; ou fibrosos, como a lã de vidro, lã de rocha, algodão e outros (Figura 2.1).

Em materiais porosos, a energia acústica incidente entra pelos poros e é dissipada devido às múltiplas reflexões e atrito viscoso, transformando-se em energia térmica que é dispersa por convecção natural. Em materiais fibrosos, a energia acústica penetra nos interstícios das fibras, fazendo com que elas vibrem com o ar, sendo dissipada após transformar-se em energia térmica por atrito entre as fibras excitadas (GERGES, 2000).

Pode-se escolher a espessura (*l*) do material de absorção sonora em função da componente mais baixa da frequência do ruído, de modo a se obter o primeiro meio comprimento de onda, em que a velocidade da partícula é máxima (GERGES, 2000; Equção 2.2; Figura 2.2).

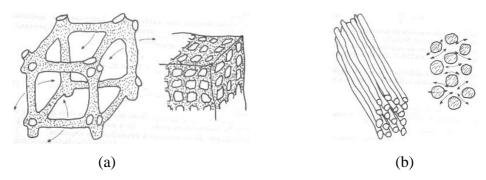


Figura 2.1 – Material poroso (a); material fibroso (b) Fonte: GERGES, 2000

$$l \ge \frac{c}{2f} \tag{m}$$

sendo l a espessura do material de absorção (m); c a velocidade de propagação da onda sonora no ar, dada por 343 m/s à temperatura de 20 °C; f a componente mais baixa da frequência do som (Hz).

Entretanto, para valores muito baixos de frequências, obtêm-se valores de l elevados e impraticáveis. Para se obter valores mais práticos de l, recomenda-se afastar o material da parede de uma distância d em torno de um quarto de comprimento de onda (λ), o que resulta em uma espessura do material também em torno de um quarto de comprimento de onda (Figura 2.2), isto é:

$$l = d = \frac{c}{4f} \tag{m}$$

sendo d uma distância em torno de um quarto de comprimento de onda (m).

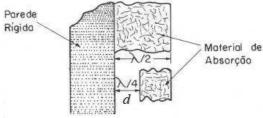


Figura 2.2 – Alternativa para colocação de material fonoabsorvente Fonte: GERGES, 2000

A frequência, a espessura e a massa específica dos materiais absorvedores influenciam no valor do coeficiente de absorção, que tende a aumentar nas baixas frequências para materiais mais espessos e densos (Figura 2.3).

O conhecimento do coeficiente de absorção sonora é necessário para a determinação da área de absorção equivalente devida ao fechamento, ocupantes, objetos e ar no interior de um recinto. Essa área é item preponderante no cálculo do tempo de reverberação do som no ambiente fechado.

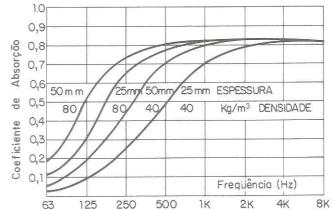


Figura 2.3 – Características típicas de materiais porosos Fonte: GERGES, 2000

2.1.1. Área de absorção do fechamento no interior de um recinto

Dentre as expressões propostas para o cálculo da área de absorção equivalente devida ao fechamento no interior de um recinto (A_f^{fech}), encontram-se as equações de Sabine, Millington e Eyring, as quais são aplicadas no cálculo do tempo de reverberação e que são detalhadas a seguir.

2.1.1.1. Equação de Sabine

A equação de Sabine para o cálculo da área de absorção equivalente do fechamento no interior de um ambiente fechado é dada por (CITHERNET, 2001):

$$A_f^{fech} = S\overline{\alpha}_f^{Sab} = \sum_{i}^{fech} (S_i \alpha_{i,f}^{Sab})$$
 (m² Sabine)

sendo S a área total da superfície interna do recinto; $\overline{\alpha}_f^{Sab}$ a média dos coeficientes de absorção na frequência f, dada pela Equação 2.5; S_i a área da superfície interna i do recinto (m²); $\alpha_{i,f}^{Sab}$ o coeficiente de absorção de Sabine da superfície i na frequência f.

$$\overline{\alpha}_f^{Sab} = \frac{\sum_{i}^{fech} (S_i \alpha_{i,f}^{Sab})}{S}$$
 (2.5)

Segundo a equação de Sabine, para um campo acústico difuso, que ocorre quando a potência acústica é a mesma em todo o ambiente, a cada vez que a onda sonora encontra o fechamento do recinto, uma fração da potência é absorvida $(\overline{\alpha}_f^{Sab})$, podendo parte dela ser transmitida para o outro lado, e uma fração é refletida $(1-\overline{\alpha}_f^{Sab})$. Entretanto, há limitações para a aplicação da Equação 2.5, e uma delas é quando tem-se α_i^{Sab} muito próxima da unidade para materiais muito absorvedores. Nesse caso, quando um material absorve perfeitamente o som, não há som refletido e o tempo de reverberação (TR) tende a zero, não sendo recomendada a aplicação da equação de Sabine (CITHERLET, 2001).

Se a hipótese de materiais altamente absorvedores for aplicada à equação de Sabine, o tempo de reverberação leva à seguinte equação (CITHERLET, 2001):

$$\lim TR_{\alpha_{i,f}^{Sab} \to 1} \approx \frac{55,3V}{c(S + A_f^{obj + pes} + A_f^{ar})}$$
(2.6)

sendo TR o tempo de reverberação (s); c a velocidade de propagação da onda sonora no ar; (343 m/s à temperatura de 20 °C); V o volume do recinto (m³); S a área da superfície interna (m²); $A_f^{obj+pes}$ a área equivalente de absorção de objetos e pessoas (m²); A_f^{ar} a área equivalente de absorção do ar (m²).

O tempo de reverberação torna-se então função da geometria da superfície do fechamento, ou seja, tende a zero quando a área da superfície interna (S) é muito maior do que o volume do recinto (V), o que não ocorre em situações normais.

A equação de Sabine é, dessa forma, aplicável somente para recintos com fechamentos reverberantes ($\alpha_{i,f}^{Sab} << 1$). Jouhaneau (1997 apud CITHERLET, 2001), propõe o uso dessa formulação enquanto a média dos coeficientes de absorção de Sabine das várias superfícies (α_f^{Sab}) na frequência f seja menor que 0,2.

Para contornar a dificuldade de aplicação para materiais altamente absorvedores, são propostos mecanismos de aproximação nos quais o decaimento do som é assumido como um processo contínuo. Aproximações estatísticas assumem que a energia da onda sonora é absorvida a cada reflexão e utilizam, em substituição a ($\alpha_{i,f}^{Sab}$), um coeficiente de absorção estatístico ($\alpha_{i,f}^{E}$), que representa a proporção de energia sonora absorvida na frequência f por uma superfície de extensão infinita para a energia sonora incidente sobre a superfície quando o campo sonoro é perfeitamente difuso (CITHERLET, 2001).

2.1.1.2. Equação de Millington

A equação de Millington consiste em uma aproximação estatística aplicada para o cálculo da área total equivalente de absorção de fechamentos de recintos e baseia-se no decaimento da energia sonora a cada reflexão, sendo dada por (CITHERLET, 2001):

$$A_f^{fech} = \sum_{i}^{fech} \left(S_i \ln \frac{1}{1 - \alpha_{i,f}^E} \right) \tag{m2}$$

sendo $\alpha^{E}_{i,f}$ o coeficiente de absorção sonora estatístico.

Pela formulação de Millington, a área total de absorção equivalente ($A_f^{\it fech}$) é compatível com o tempo de reverberação ($\it TR$) observado em um recinto fechado com materiais altamente fonoabsorventes, pois nesse caso o tempo de reverberação tende a zero independente da forma da superfície do fechamento.

No entanto, a equação de Millington não é adequada se uma superfície possui coeficiente de absorção sonora próximo da unidade e outra superfície próxima tiver coeficiente de absorção perto de zero, pois se $A_f^{fech} \to \infty$, o tempo de reverberação tende a zero, o que não ocorre na prática (Tabela 2.1). Dessa forma, essa equação pode ser aplicada independente das absorções

das superfícies (altas ou baixas), mas não deve ser utilizada quando os valores de absorção dos diversos materiais forem muito diferentes.

2.1.1.3. Equação de Eyring

A equação de Eyring também consiste em uma aproximação estatística aplicada para o cálculo da área total equivalente de absorção de fechamentos de recintos e considera a soma da potência absorvida em cada face individualmente (CITHERLET, 2001):

$$A_f^{fech} = -S\ln\left(1 - \frac{-E}{\alpha_f}\right) = -S\ln\left(1 - \frac{1}{S}\sum_{i}^{fech}S_i\alpha_{i,f}^E\right)$$
 (m²)

No entanto, essa formulação também apresenta uma limitação no caso de um material de fechamento muito absorvedor, com ($\alpha_{i,f}^E \to 1$), fazendo com que o tempo de reverberação se aproxime de zero (Tabela 2.1):

$$\ln\left(1 - \frac{1}{S} \sum_{i}^{fech} S_i \alpha_{i,f}^E\right) \to -\infty \quad e$$
(2.9)

$$A_f^{fech} \to \infty$$
, o que leva a $TR \to 0$

Sendo assim, a equação de Eyring possui melhor aplicabilidade para superfícies mais reflexivas.

2.1.2. Coeficiente de absorção de Sabine x coeficiente de absorção estatístico

O coeficiente de absorção de Sabine ($\alpha_{i,f}^{Sab}$) corresponde ao coeficiente de absorção quando se considera incidência normal, podendo ser calculado por meio da Equação 2.5, medindo-se o tempo de reverberação em uma câmara reverberante, dispondo-se amostras do material considerado no piso e comparando-se o resultado obtido na câmara vazia.

O coeficiente de absorção estatístico ($\alpha_{i,f}^{E}$), definido para uma superfície de extensão infinita, que não ocorre na prática, é distinto do coeficiente de absorção de Sabine ($\alpha_{i,f}^{Sab}$) definido

para uma superfície de extensão finita. O coeficiente de absorção sonora para incidência aleatória é chamado de coeficiente de absorção sonora estatístico, dado pela expressão de Paris (BERANEK, 1988; BIES, HANSEN, 2003; MAEKAWA; RINDEL; LORD, 2011).

$$\alpha_{i,f}^{E} = \int_{0}^{\frac{\pi}{2}} \alpha_{\theta} \operatorname{sen}(2\theta) d\theta \tag{2.10}$$

sendo θ o ângulo de incidência do som.

Para Beranek (1988 apud CITHERLET, 2001), a diferença entre $\alpha_{i,f}^E$ e $\alpha_{i,f}^{Sab}$ deve-se à difração de um campo sonoro incidente em uma superfície de extensão finita, principalmente em baixas frequências.

Na prática, $\alpha_{i,f}^{Sab}$ é aplicado nas equações de Millington e Eyring (Tabela 2.1), gerando uma simplificação que pode levar a resultados não tão precisos e requer que o campo sonoro considerado seja o mais perfeitamente difuso. Essa idealização pode ser adotada quando o recinto possuir uma dimensão não muito diferente da outra, quando suas dimensões forem maiores do que o comprimento de onda, o que é comum em edificações, e quando a absorção for distribuída uniformemente ao longo dos limites do recinto (CITHERLET, 2001).

Tabela 2.1. Coeficientes de absorção e áreas de absorção equivalente para o cálculo do tempo de reverberação

	Sabine	Millington	Eyring
Coeficiente de	$-Sab \atop \alpha \in \{0,2\}$	$\frac{-s_{ab}}{\alpha_f} \ge 0.2 \mathrm{e}$	$\alpha_f^{Sab} \ge 0.2$
absorção (a)	$\alpha_f < 0,2$	α_f^{Sab} não $\rightarrow 1$	$\alpha_f \geq 0,2$
Área equivalente do fechamento (A_f^{fech})	$\sum_{i}^{fech}(S_{i}lpha_{i,f}^{Sab})$	$\sum_{i}^{fech} \left(S_{i} \ln \frac{1}{1 - \alpha_{i,f}^{Sab}} \right)$	$- S \ln \left(1 - \frac{1}{S} \sum_{i}^{fech} S_{i} \alpha_{i,f}^{Sab} \right)$

Fonte: CITHERLET, 2001

2.1.3. Área de absorção equivalente de objetos e ocupantes

A área equivalente de absorção sonora ($A_f^{obj+pes}$) devido à presença de objetos e pessoas no interior do recinto é dada por:

$$A_f^{obj+pes} = \sum_{i}^{obj} (N_j A_{j,f}^{obj}) + \sum_{k}^{pes} (P_k A_{k,f}^{pess})$$
 (m²)

sendo N_j o número de ocorrências do objeto tipo j, $A_{j,f}^{obj}$ a área equivalente de absorção do objeto j na frequência f (m²); P_k o número de ocorrências da pessoa tipo k, $A_{k,f}^{pes}$ a área equivalente de absorção da pessoa k na frequência f (m²).

A área equivalente de absorção de objetos comuns e pessoas pode ser encontrada em literatura especializada. Para objetos rígidos e de forma irregulares, tais como carteiras, computadores, dentre outros, é comum estimar a área equivalente de absorção como se segue (CEN, 2000, apud CITHERLET, 2001):

$$A_{f,j}^{obj} = (V_j^{obj})^{2/3}$$
 (m²)

sendo V_{j}^{obj} o volume do objeto j (m³).

2.1.4. Absorção equivalente devida ao ar

Segundo Citherlet (2001), em ambientes amplos, a distância percorrida pelas ondas sonoras através do ar é longa e a fração de energia sonora que é absorvida pelo ar não deve ser desprezada na frequência acima de 1000 Hz. Essa absorção sonora depende da temperatura e composição do ar, bem como da concentração de partículas de vapor de água presentes e da frequência sonora. Além disso, está associada a perdas clássicas de energia (transformação de energia acústica em energia térmica equivalente) e a perdas de energia por relaxação (redistribuição de energia interna que ocorre durante a colisão das moléculas de gás).

A absorção sonora pelo ar presente no recinto (A_f^{ar}) pode ser expressa pela equação (KNUDSEN; HARRIS, 1978, apud CITHERLET, 2001):

$$A_f^{ar} = 4mV \tag{2.13}$$

sendo m o coeficiente de absorção sonora do ar (m⁻¹); V o volume do recinto (m³).

Para que haja conforto de usuários, a umidade relativa interna tem que estar próxima de 55%, o que eleva o tempo de reverberação (CITHERLET, 2001). Em edificações que possuem umidade e temperaturas usuais, o valor de m aumenta proporcionalmente ao quadrado da frequência, elevando seu valor nas altas frequências. Na Tabela 2.2, encontram-se os valores de coeficientes de absorção sonora do ar por banda de oitava de frequência, para alguns valores de temperaturas e umidades relativas. Pode-se ver que, se a umidade relativa do ar aumenta, m decresce e, consequentemente, A_f^{ar} também decresce, elevando o valor do tempo de reverberação (CEN, 2000, apud CITHERLET, 2001).

Tabela 2.2. Coeficientes de absorção sonora do ar (m)

Condição do ar	4 m x10 ⁻³ (m ⁻¹) para frequência em banda de oitava (Hz)					
Condição do ar	125	250	500	1000	2000	4000
10 °C, 30-50% umidade	0,5	0,9	1,8	4,4	10,2	36,0
10 °C, 50-70% umidade	0,4	0,9	1,7	3,1	6,9	23,1
10 °C, 70-90% umidade	0,3	0,9	1,8	3,0	5,7	17,5
20 °C, 30-50% umidade	0,5	1,3	2,4	3,9	7,4	22,0
20 °C, 50-70% umidade	0,4	1,1	2,6	4,1	6,6	16,1
20 °C, 70-90% umidade	0,3	1,0	2,6	4,1	6,7	14,1

Fonte: CEN, 2000, apud CITHERLET, 2001

Em simulações computacionais pode-se expressar o coeficiente *m* para condições específicas do ar usando-se formulações como a apresentada a seguir (CITHERLET, 2001):

$$m = 3,68.10^{-11} f^{2} \left(\frac{P}{P_{0}}\right)^{-1} \left(\frac{T}{T_{0}}\right)^{1/2} + \left(\frac{T}{T_{0}}\right)^{-5/2} \begin{pmatrix} 0,1068e^{-3352,0/T} & \frac{2f^{2}}{f_{rN}} + \frac{f^{2}}{f_{rN}} \\ + 0,0128e^{-2239,1/T} & \frac{2f^{2}}{f_{r0}} + \frac{f^{2}}{f_{r0}} \end{pmatrix}$$

$$(m^{-1}) \qquad (2.14)$$

$$f_{rN} = \frac{P}{P_0} \left(\frac{T}{T_0} \right)^{-1/2} \left(9 + 280 \ h_a e^{-4,170} \left[\left(\frac{T}{T_0} \right)^{-1/3} - 1 \right] \right)$$
 (Hz)

$$f_{r0} = \frac{P}{P_0} \left(24 + 4,04.10^4 h_a \frac{0,02 + h_a}{0,391 + h_a} \right)$$
 (Hz)

$$h_a = \frac{\phi.10^{-6.8346 \left(T_{0i}/T\right)^{1.261} + 4.6151}}{\frac{P}{P_0}} \tag{\%}$$

sendo f a frequência (Hz); P a pressão do ar (kPa); P_0 a pressão de referência do ar (101,325 kPa); T a temperatura do ar (K); T_0 a temperatura de referência do ar (293,15 K); f_{rN} a frequência de relaxação para o Nitrogênio (Hz); f_{r0} a frequência de relaxação para o Oxigênio (Hz); h_a a concentração molar do vapor de água (%); Φ a umidade relativa do ar (%); T_{0i} a temperatura isotérmica de ponto triplo (273,16 K).

2.2. Campo reverberante

Uma fonte sonora localizada em um recinto, onde as paredes não sejam altamente absorsivas, irradia, além de seu campo sonoro original, um campo sonoro adicional causado por reflexões dessas ondas nas superfícies da sala. As ondas refletidas viajam em muitas direções diferentes e tendem a aumentar o nível de pressão sonora no espaço, produzindo um som persistente e constante enquanto a fonte está ativa. Nessa condição de nível acústico estacionário, a energia sonora injetada pela fonte é equilibrada pela energia sonora absorvida e o campo sonoro adicional gerado pela reflexão das ondas é chamado de campo reverberante (BIES; HANSEN, 2003; BISTAFA, 2006).

Desse modo, as propriedades reflexivas da superfície de fechamento, bem como sua forma, afetam fortemente o som do recinto e, na reverberação, pode-se ter uma deterioração ou um reforço do som direto. A deterioração ocorre em razão da parte de energia sonora que é absorvida pela superfície. A amplificação pode surgir quando o campo sonoro está dominado por ondas de baixas frequências, que são refletidas ao alcançarem as paredes, geralmente com uma pequena perda de energia. Nesse caso, pode ocorrer de alguma onda sonora repassar por ela mesma formando modos normais de vibração. Em certas frequências, as ondas podem também favorecer amplificações das ondas perturbadas (BIES; HANSEN, 2003).

Desligando-se a fonte, o som diminui gradativamente e há um determinado período de tempo até que cesse totalmente em razão de suas múltiplas reflexões nas superfícies encontradas. Isso ocorre porque, em cada reflexão sucessiva, as paredes do recinto e os objetos presentes

absorvem uma fração da energia sonora e a fração de energia restante é refletida no espaço, de modo que o som não desaparece imediatamente. Essa permanência do som é referida como a reverberação da sala (CITHERLET, 2001).

Algumas ondas podem sofrer sucessivas reflexões e, na região onde o campo reverberante domina, a pressão sonora média alcança um nível independente da distância da fonte. Se muitas ondas que passam por sucessivas reflexões se cruzam em todas as possíveis direções e a densidade de energia sonora é aproximadamente uniforme através do campo, ou seja, a energia sonora vem de todas as direções simultaneamente com igual probabilidade, tem-se um campo sonoro difuso. Em um recinto que possui paredes acusticamente reflexivas, o campo reverberante domina todo o seu interior exceto em uma pequena região próxima da fonte (BIES; HANSEN, 2003).

A taxa de atenuação do som, bem como a fração de energia sonora absorvida, depende da frequência do som emitido, da capacidade do material do contorno para absorver essa frequência, do volume de ar e do espectro de frequências do som.

2.2.1. Tempo de reverberação

O tempo de reverberação (*TR*) é definido pelo tempo necessário para que o nível de pressão sonora em um recinto decaia em 60 dB, a partir da interrupção da fonte, e constitui um indicador que pode ser aplicado para determinar o desempenho acústico de um ambiente fechado. Ele tende a ser maior em recintos com pouca absorção sonora do que em recintos com muita absorção sonora e inclui a absorção devido ao contorno, mobiliário, ocupantes e ar presente (BIES; HANSEN, 2003; HASSAN, 2009; MAEKAWA; RINDEL; LORD, 2011).

Quanto maior a absorção total do recinto, menor é a energia sonora do campo reverberante. Diante disso, para controlar o ruído proveniente da reverberação no local, é necessário conhecer a capacidade de isolação sonora dos sistemas de fechamento e a capacidade dos materiais aplicados no interior da edificação em absorver o ruído interno (KINSLER et al., 1982; CITHERLET; HAND, 2002).

O tempo de reverberação deve estar de acordo com o uso do recinto, sendo um dos principais parâmetros utilizados para uma boa ambientação acústica, pois valores inadequados podem atrapalhar a inteligibilidade, ou o entendimento da fala. Quanto maior o volume do recinto e a presença de materiais pouco absorvedores, maior é a duração da reverberação. Se a

reverberação persistir no ambiente por muito tempo, pode haver sobreposição de sílabas e/ou notas musicais e, se desaparecer imediata e totalmente, alguns tipos de fontes sonoras podem não ser percebidos (MAEKAWA; RINDEL; LORD, 2011).

Recintos destinados à palavra falada (salas de aula, de conferência e teatros) requerem tempos de reverberação mais curtos, pois o ideal é que o som refletido decaia o quanto antes para que não interfira no som direto e não reduza sua inteligibilidade. Para uma pequena sala, o tempo de reverberação de 0,5 s é adequado. Em contrapartida, em salas de concerto, o tempo de reverberação deve ser mais longo, pois a reverberação é até certo ponto necessária para que haja qualidade acústica à música orquestral (MEHTA; JOHNSON; ROCAFORT, 1999; BISTAFA, 2006).

A norma NBR 12179 (ABNT, 1992b) apresenta um gráfico com valores ideais de tempos de reverberação conforme o tipo de uso do recinto. Esses valores são utilizados para projetar ou ajustar a resposta sonora do ambiente. Na Figura 2.4 mostra-se esse gráfico com tempos de reverberação em função do volume do recinto para a frequência de 500 Hz.

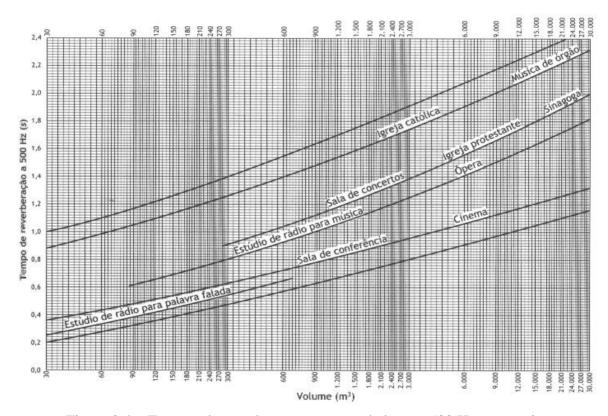


Figura 2.4 – Tempos de reverberação recomendados em 500 Hz para recintos Fonte: NBR 12179 (ABNT, 1992b)

Na Figura 2.5 a curva apresentada permite obter os tempos de reverberação recomendados para outras frequências como porcentagem do tempo de reverberação em 500 Hz obtido nas curvas mostradas na Figura 2.4 (BISTAFA, 2006).

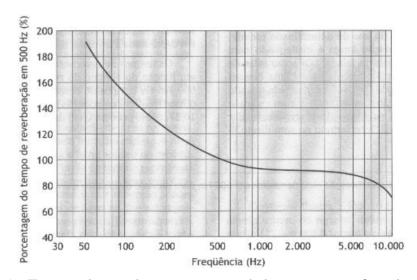


Figura 2.5 – Tempos de reverberação recomendados para outras frequências, como porcentagem do tempo de reverberação em 500 Hz Fonte: BISTAFA, 2006

2.2.1.1. Equação de Sabine para o cálculo do tempo de reverberação

Wallace Clement Sabine, percussor da Acústica Arquitetônica Moderna, definiu, em 1896, o tempo de reverberação como (CITHERLET, 2001; BISTAFA, 2006):

$$TR = \frac{55,3V}{cA_f^t} \tag{s}$$

Para c igual a 343 m/s à temperatura de 20 °C, tem-se:

$$TR = 0.161 \frac{V}{A_f^t}$$
 (s)

sendo V o volume do recinto (m³); f a frequência considerada (Hz); A_f^t a área total equivalente do recinto para a frequência f (m²).

Segundo a norma ISO 266 (ISO, 1975), as frequências usadas para o cálculo do tempo de

reverberação para a banda de oitava são 125, 250, 500, 1000, 2000 e 4000 (Hz) e para banda de terço de oitava são 100, 125, 160, 200, 250, 315, 400, 500, 680, 800, 1000, 1250, 1600, 2000, 2500, 3150 e 4000 (Hz).

A área total equivalente do recinto (A_f^t) representa a área de um perfeito fonoabsorvedor que teria o mesmo impacto de absorção da superfície do material do interior do ambiente fechado e inclui a absorção devida ao ar ambiente, ao sistema de fechamento, ao mobiliário e aos ocupantes presentes, dada por:

$$A_f^t = A_f^{fech} + A_f^{obj+pes} + A_f^{ar}$$
 (m²)

sendo A_f^{fech} a área de absorção equivalente do fechamento no interior do recinto (m²); $A_f^{obj+pes}$ a área de absorção equivalente dos objetos e pessoas no interior do recinto (m²); A_f^{ar} a absorção equivalente devida ao ar no interior do recinto (m²).

2.2.1.2. Equação de Arau-Puchades para o cálculo do tempo de reverberação

A equação de Arau-Puchades para o cálculo do tempo de reverberação considera a não uniformidade da distribuição da absorção sonora do recinto. Indicada para ambientes retangulares, o decaimento da reverberação é assumido como um processo hiperbólico, e o coeficiente de absorção baseia-se no modelo de Eyring tomado para cada par de superfícies paralelas e cada direção do espaço do ambiente fechado. Nesse caso, o tempo de reverberação é dado pelo produto de três fatores correspondentes à absorção sonora dos materiais, localizados nas paredes paralelas aos eixos x, y e z, e ao coeficiente de absorção sonora do ar (ARAU-PUCHADES, 1988; DUCOURNEAU; PLANEAU; 2003; PASSERO; ZANNIN, 2010):

$$TR = \left[\frac{0.161V}{-S\ln(1-\overline{\alpha}_x)+4mV}\right]^{\frac{S_x}{A_f'}} \left[\frac{0.161V}{-S\ln(1-\overline{\alpha}_y)+4mV}\right]^{\frac{S_y}{A_f'}} \left[\frac{0.161V}{-S\ln(1-\overline{\alpha}_z)+4mV}\right]^{\frac{S_z}{A_f'}}$$
(s)
$$(2.21)$$

sendo $\overline{\alpha}_x$ a média aritmética dos coeficientes de absorção das superfícies do piso e do teto, cujas áreas são S_{xI} e S_{x2} , respectivamente, ou, $\overline{\alpha}_x = \frac{\alpha_{x1}S_{x1} + \alpha_{x2}S_{x2}}{S_x}$; $\overline{\alpha}_y$ e $\overline{\alpha}_z$ a média aritmética dos coeficientes de absorção das superfícies das paredes laterais e de frente e de trás, respectivamente; S_x , S_y e S_z as somas das áreas dos materiais que estão paralelos aos eixos axiais x, y e z, respectivamente.

A Equação 2.21 não é recomendada para valores de $\overline{\alpha}_x = 0$, o que praticamente não existe, pois todos os materiais possuem alguma absorção sonora.

2.3. Transmissão sonora

A potência sonora pode ser transmitida via aérea e/ou via sólido. As ondas sonoras vindas de uma fonte em um ambiente se propagam em várias direções com diferentes intensidades. Quando o som encontra uma parede divisória, parte da potência sonora é refletida e parte penetra na superfície. Essa última se compõe de duas parcelas, uma parcela que é absorvida pelo material que compõe a parede, degradando-se em forma de calor, e outra que é transmitida para o outro lado, irradiando-se no ambiente adjacente, com potência sonora menor e um espectro sonoro diferente, uma vez que ocorre atenuação principalmente das altas frequências (SALES, 2001).

O coeficiente de transmissão sonora, τ (adimensional), está associado à parcela da potência sonora que é transmitida pela face da parede divisória oposta à do som incidente, caracterizando sua capacidade de transmitir ou isolar o som. Tem-se que, quanto menor o valor do coeficiente de transmissão sonora, menor é a intensidade sonora transmitida, ou seja, mais isolante é a superfície (BISTAFA, 2006).

$$\tau = \frac{W_t}{W_i} \tag{2.22}$$

sendo W_i a potência sonora incidente; W_t a potência sonora transmitida.

Paredes compostas, que apresentam elementos como painéis de diferentes materiais, janelas, portas, aberturas para ventilação, dentre outros, têm sua homogeneidade interrompida e o coeficiente de transmissão sonora pode ser obtido a partir do coeficiente de transmissão de seus componentes individuais pela equação (BIES; HANSEN, 2003; BISTAFA, 2006):

$$\tau_{c} = \frac{\sum_{i=1}^{n} S_{i} \tau_{i}}{\sum_{i=1}^{n} S_{i}}$$
 (2.23)

na qual,

$$\tau_i = 10^{-PT_i/10} \tag{2.24}$$

sendo τ_c o coeficiente de transmissão sonora da parede composta; S_i a área do i-ésimo componente da partição (m²); τ_i o respectivo coeficiente de transmissão sonora; PT_i a perda na transmissão sonora do i-ésimo componente da parede (dB).

Se uma parede constitui parte de uma edificação, a energia sonora pode se transmitir de um recinto para outro por outros caminhos diferentes da transmissão direta que ocorre através dessa parede. Um dos caminhos é a transmissão através da estrutura, ou, transmissão por flancos. Nesse caso, o som chega ao outro lado por um caminho diferente do que separa nominalmente parede ou piso.

Esse processo ocorre quando o campo sonoro vindo do recindo onde se encontra a fonte sonora transmite vibrações, através de paredes laterais ou junções, ao recinto adjacente. As paredes do recinto receptor irradiam potência sonora para o espaço acústico desse mesmo recinto adicionado à potência sonora transmitida pela partição por caminho direto. Na Figura 2.6 ilustra-se, em plano horizontal, os caminhos de transmissão sonora entre duas salas adjacentes que pode ocorrer pelo piso (HASSAN, 2009).

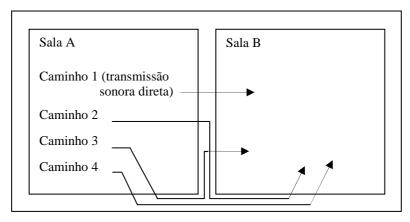


Figura 2.6 – Caminhos de transmissão sonora entre duas salas adjacentes Fonte: HASSAN, 2009

2.3.1. Perda na transmissão sonora

O fenômeno da atenuação do som, que ocorre quando o mesmo atravessa uma parede divisória e chega ao outro lado com uma intensidade sonora menor do que o original, está representado na Figura 2.7, sendo (1) parte da onda sonora que se dissipa em forma de energia térmica dentro da parede, (2) parte que é refletida para o meio da fonte, e (3) a parte que é transmitida para o outro lado, que pode ser outro recinto ou o meio externo. A potência sonora recebida pela sala adjacente define a capacidade de isolação sonora da parede e depende do tipo de material que a compõe, da frequência do som e do sistema construtivo.

A característica de isolamento sonoro da parede pode ser então expressa em termos de um parâmetro derivado do coeficiente de transmissão sonora, denominado de perda na transmissão sonora (*PT*), que ocorre através da parede (GERGES, 2000; BIES; HANSEN, 2003; BISTAFA, 2006).

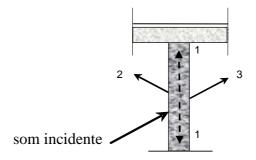


Figura 2.7 – Esquema de transmissão sonora através de paredes simples Fonte: SALES, 2001

2.3.2. Perda na transmissão sonora de paredes simples

Em uma parede simples, a perda na transmissão sonora é dada pela Equação 2.25 (GERGES, 2000; BIES; HANSEN, 2003; BISTAFA, 2006):

$$PT = 10\log\frac{1}{\tau} = 10\log\frac{W_i}{W_t}$$
 (dB)

sendo τ o coeficiente de transmissão sonora da parede, W_i a potência sonora incidente; W_t a potência sonora transmitida.

Em geral, um material para ser bom isolante sonoro deve possuir um valor elevado de massa específica, diferentemente de materiais porosos e fibrosos que, em virtude de sua porosidade, são mais eficientes como absorvedores acústicos. Assim, para tratar os problemas de ruído é necessário conhecer bem o fenômeno, sua aplicação e prática, em busca de soluções adequadas.

A perda na transmissão sonora de uma parede é influenciada pela frequência do som incidente apresentando distintos comportamentos de ressonância e vibração conforme sua massa e rigidez. Na Figura 2.8, tem-se uma curva típica de perda na transmissão sonora em função da frequência do som incidente em paredes sólidas e homogêneas. Essa curva pode ser dividida em regiões que mostram a propriedade da parede que mais influencia na perda na transmissão, de modo que seu isolamento sonoro deve ser calculado considerando os distintos comportamentos para as diferentes bandas de frequências.

Na região de frequências baixas, a transmissão sonora é controlada pela rigidez e depois pela ressonância e capacidade de amortecimento do material da parede. Na região de frequências médias (aproximadamente o dobro da frequência de ressonância (f_r) mais baixa), a transmissão sonora é controlada pela massa da parede. Na região de frequências altas, o fenômeno da coincidência controla a transmissão sonora, e é onde ocorre a frequência crítica (f_c) (GERGES, 2000; BISTAFA, 2006; Figura 2.8).

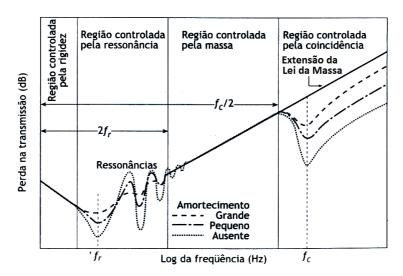


Figura 2.8 – Curva típica de perda na transmissão sonora Fonte: BISTAFA, 2006

2.3.2.1. Região controlada pela rigidez

Na região controlada pela rigidez, ou região de baixas frequências, a perda na transmissão é controlada pela rigidez do material da parede, que, se for composta por painéis de pequena espessura, tende a vibrar como um todo, enquanto sua massa e amortecimento agem com pouco efeito. Em geral, o valor da perda na transmissão aumenta com a redução da frequência, abaixo da frequência de ressonância, em cerca de 6 dB para cada redução da frequência pela metade (BIES; HANSEN, 2003; BISTAFA, 2006; HASSAN, 2009).

2.3.2.2. Região controlada pela ressonância

No ar, a transmissão do som ocorre por meio de ondas longitudinais e, no meio sólido, as ondas mecânicas se propagam também por flexão. A combinação construtiva de ondas de flexão, que se propagam por uma parede composta por painéis e que se refletem nas suas bordas, é responsável pelas frequências de ressonância. Cada frequência de ressonância está associada a um modo de vibrar dos painéis. Sendo assim, essas frequências estão relacionadas às condições de contorno nas suas bordas. Na região controlada pela ressonância, há diversas frequências de ressonância (f_r) na flexão que, no caso de painéis simplesmente apoiados são dadas por (BIES; HANSEN, 2003; BISTAFA, 2006; Figura 2.8):

$$f_{r_{ij}} = \frac{\pi}{2} \sqrt{\frac{B_s}{M}} \left(\frac{i}{a^2} + \frac{j}{b^2} \right)$$
 (Hz); i, j = 1, 2, 3, ... (2.26)

sendo a e b a largura e o comprimento do painel (m), respectivamente; B_S a rigidez à flexão do painel (Nm); M a massa específica superficial do painel (kg/m²).

A rigidez à flexão do painel, B_s (Nm), pode ser obtida a partir de um modelo idealizado, composto por um painel sólido e homogêneo de módulo de elasticidade E (N/m²) e espessura h (LAMANCUSA, 2000 apud BISTAFA, 2006; BIES; HANSEN, 2003; Figura 2.9):

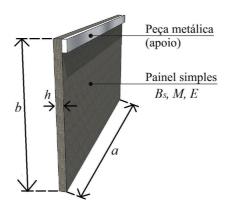


Figura 2.9 – Modelo idealizado de painel sólido e homogêneo

$$B_{\rm S} = \frac{Eh^3}{12(1-v^2)} \qquad (\rm Nm) \tag{2.27}$$

sendo *v* o coeficiente de Poisson do material do painel (adimensional).

Para painéis com bordas engastadas, as frequências de ressonância são o dobro das frequências obtidas pela Equação 2.26. Obtêm-se as frequências de ressonância variando-se os índices i e j, tomando-se, como exemplo, a frequência de ressonância associada ao modo (2,1) de vibrar do painel, que é obtida fazendo-se i = 2 e j = 1 (BISTAFA, 2006).

Entretanto, na ressonância, ocorre queda na perda na transmissão, pois é aumentado o efeito do som incidente transmitido pela parede devido à amplificação do movimento do painel. O movimento do painel e a perda na transmissão na região controlada pela ressonância são controlados pelo amortecimento e a energia sonora também é absorvida durante o movimento

do painel. Em várias situações de controle de ruído, a menor frequência de ressonância de paredes divisórias está abaixo da menor frequência de áudio (BISTAFA, 2006).

Conforme a curva mostrada na Figura 2.8, a região controlada pela ressonância chega até a, aproximadamente, o dobro da menor frequência de ressonância dada pela Equação 2.26, fazendo-se i = j = 1.

2.3.2.3. Região controlada pela massa

Quanto mais massa possui um fechamento e maior a frequência incidente, maior também é a dificuldade para fazer esse material vibrar, garantindo-se, assim, um isolamento acústico mais eficiente. Pode-se, então, afirmar que, para se obter um bom isolamento sonoro, é necessário usar materiais de alta massa específica superficial e também que as altas frequências são mais fáceis de serem isoladas do que as baixas frequências. Dessa forma, na região controlada pela massa, a transmissão sonora depende da massa específica do material e da frequência da onda incidente (BIES; HANSEN, 2003; HASSAN, 2009).

Gerges (2000) apresenta a equação para o cálculo da perda na transmissão sonora conhecida como Lei da Massa aplicada, aplicada no caso de incidência difusa, dada por:

$$PT = 20 \log (Mf) - 47,4$$
 (dB)

sendo f a frequência da onda incidente (Hz); M a massa específica superficial do material da parede (kg/m²).

Na Equação 2.28, válida para frequências entre $2f_r$ e $f_c/2$, supõe-se que Mf seja maior que ρc , onde ρc é a impedância característica do meio de propagação da onda sonora, sendo ρ a massa específica do material (kg/m³) e c a velocidade da onda sonora no ar (m/s).

Na região controlada pela massa, a perda na transmissão sonora aumenta 6 dB por oitava, ou, 6 dB para cada duplicação da massa específica superficial do material da parede ou da frequência da onda incidente, mostrando um comportamento inverso ao da região da rigidez. Essa região, que está entre a região controlada pela ressonância e a região controlada pela coincidência, é limitada nas baixas frequências pelo dobro da frequência de ressonância $(2f_r)$ e

nas altas frequências pela metade da frequência crítica ($f_c/2$), onde ocorre uma queda brusca na perda na transmissão (BISTAFA, 2006).

Deve-se conhecer bem o espectro do som a ser isolado e escolher adequadamente a parede para o isolamento acústico, para que não ocorram os efeitos da ressonância e da coincidência. Na prática, na maioria dos casos, as frequências dos sons estão acima da ressonância do painel e o controle sonoro é feito com base no princípio da Lei da Massa.

Sharp (1973 apud BIES; HANSEN, 2003) mostra que são obtidos bons resultados, aplicandose a Equação 2.29 para a determinação da perda na transmissão sonora cujas frequências estão classificadas dentro da região controlada pela massa, abaixo de $f_c/2$ para painéis isotrópicos, ou $f_{cl}/2$ para painéis ortotrópicos:

$$PT = 20\log\left(\frac{\pi Mf}{\rho c}\right) - 5.5 \qquad (dB)$$

sendo também assumido que Mf seja maior que ρc .

A Equação 2.29 não é válida para frequências abaixo de 1,5 vezes a primeira frequência de ressonância do painel. Entretanto, abaixo dessa frequência, essa equação pode ser aplicada com as medidas tomadas em banda de terço de oitava. Para previsões em banda de oitava, o valor 5,5 deve ser substituído por 4,0.

Para frequências iguais ou maiores do que a frequência crítica, segundo Sharp (1973 apud BIES; HANSEN, 2003), o cálculo da perda na transmissão sonora, no caso de painel isotrópico, pode ser feito por meio da equação:

$$PT = 20\log\left(\frac{\pi Mf}{\rho c}\right) + 10\log\left(\frac{2\eta f}{\pi f_c}\right)$$
 (dB)

sendo M a massa específica superficial do material da parede (kg/m²); f a frequência da onda incidente (Hz); ρ a massa específica do material (kg/m³); c a velocidade da onda sonora no ar (m/s); η o fator de amortecimento interno do material do painel (adimensional); f_c a frequência crítica do painel (Hz).

2.3.2.4. Região controlada pela coincidência

O fenômeno da coincidência, ou igualdade de comprimentos de onda, ocorre com a elevação da frequência do som incidente acima das frequências de ressonância, quando os comprimentos de ondas no ar vão se reduzindo e aproximando-se dos comprimentos de ondas de flexão no painel (BISTAFA, 2006; Figura 2.10).

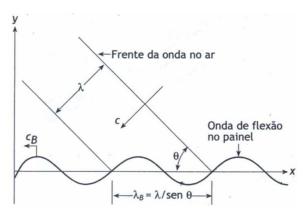


Figura 2.10 – Fenômeno da coincidência Fonte: BISTAFA, 2006

Nesse caso, tem-se que:

$$\lambda_B = \lambda / sen\theta \tag{2.31}$$

sendo λ_B o comprimento da onda de flexão (m); λ o comprimento de onda (m); θ o ângulo de incidência da onda no painel.

Como $\lambda = c/f$ e $\lambda_B = c_B/f$, então a igualdade de comprimentos de onda na coincidência se dá quando (BISTAFA, 2006):

$$c_B = c/sen\theta \tag{2.32}$$

sendo c a velocidade da onda sonora no ar (m/s); c_B a velocidade da onda de flexão no painel (m/s).

A velocidade de propagação da onda de flexão no painel não é constante, como ocorre com a propagação da onda no ar, e pode ser determinada por:

$$c_B = \sqrt[4]{(2\pi f)^2 \frac{B_S}{M}}$$
 (m/s)

A frequência de coincidência (f_{coinc}) correspondente é calculada conforme a Equação 2.34. Nessa região ocorre amplificação do movimento de flexão do painel, aumentando o efeito do som transmitido pela parede e queda da perda na transmissão do mesmo.

$$f_{coinc} = \frac{c^2}{2\pi sen^2 \theta} \sqrt{\frac{M}{B_s}}$$
 (Hz)

A menor frequência de coincidência é chamada de frequência crítica (f_c) e ocorre para a onda que se propaga razante ao painel, quando $\theta = 90^{\circ}$, sendo dada por:

$$f_c = \frac{c^2}{2\pi} \sqrt{\frac{M}{B_S}} \tag{Hz}$$

Na prática, em um recinto, o campo é em geral difuso e as ondas incidem com diferentes ângulos no painel. Entretanto, o som incidente cobre uma ampla faixa de frequências, havendo sempre um ângulo θ que promove coincidência para frequências maiores que a frequência crítica. As coincidências acontecem em uma faixa de frequências chamadas de *vale da coincidência*. Nessa região, a perda na transmissão sonora também é controlada pelo amortecimento do painel (BISTAFA, 2006; Figura 2.8).

A frequência crítica depende da rigidez à flexão do painel (B_S), pois se B_S diminui, a frequência crítica aumenta. Bistafa (2006) apresenta um gráfico para determinação da frequência crítica de painéis em função de seu material e espessura (Figura 2.11).

Por esse gráfico é possível verificar se a frequência crítica de determinado painel encontra-se na região central da faixa de frequências coberta pela fala (de 500 a 2000 Hz). Quando isso acontece, tem-se a privacidade no recinto diminuída.

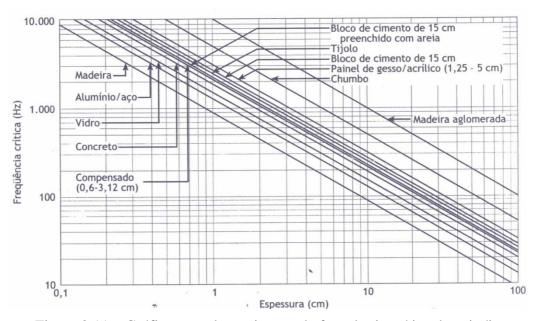


Figura 2.11 – Gráfico para determinação da frequência crítica de painéis Fonte: BISTAFA, 2006

2.3.2.5. Perda na transmissão sonora de painéis simplesmente apoiados

O estudo feito até aqui é aplicado a paredes compostas por painéis simplesmente apoiados, limitando sua aplicabilidade (Figura 2.9). Ocorre que as ondas de flexão geradas no painel pelo som incidente são refletidas nas suas bordas e ficam defasadas 180° das ondas de flexão incidente nas bordas. Esse efeito provoca ondas estacionárias que é a combinação das ondas de flexão incidentes e refletidas nas bordas. Essas ondas se reforçam mutuamente, dependendo das condições de contorno nas bordas do painel e das frequências de ressonância, o que causa deslocamentos maiores no painel (BISTAFA, 2006).

Se a frequência do som incidente aumenta, atingindo a região controlada pela massa, o painel funciona como um meio uniforme de propagação com impedância característica $(\rho c)_{painel}$ e sua rigidez à flexão fica em segundo plano. O som irradiado pelas ondas de flexão presentes não é eficiente nessa região. Para frequências menores do que a crítica, o comprimento das ondas de flexão é menor do que o comprimento das ondas que se propagam no ar. Também, a distância entre os deslocamentos máximos e mínimos na superfície do painel é menor do que o comprimento de onda do som incidente. O painel irradia pouco som, pois a energia é apenas transferida entre regiões adjacentes de pressão positiva e de pressão negativa, ocorrendo cancelamento de pressões, com pouca energia sonora (BIES; HANSEN, 2003; BISTAFA, 2006; Figura 2.12).

Nas bordas e nos cantos do painel, o cancelamento de pressões é incompleto e há radiação sonora quando a distância entre as áreas de pressão máxima e mínima se aproxima ou excede o comprimento de onda do som incidente. Porém, na prática, a radiação sonora das bordas e dos cantos do painel não altera muito a perda na transmissão na região controlada pela massa nas frequências inferiores a $f_o/2$. Na faixa de frequências entre $f_o/2$ e f_c , a radiação sonora das bordas e dos cantos pode alterar de maneira significativa a perda na transmissão do painel (BIES; HANSEN, 2003; BISTAFA, 2006).

Nas baixas frequências, para comprimento de ondas de flexão próximo ou acima das dimensões do painel, a amplitude das vibrações do mesmo é controlada pela sua rigidez. A perturbação do painel é local e ele não irradia som, exceto nas bordas e nos cantos. Ocorre então um aumento da perda na transmissão, para frequências abaixo da menor frequência de ressonância do painel. Teoricamente, esse aumento é de 6 dB cada vez que a frequência cai pela metade. No entanto, experimentalmente, observa-se um aumento menor ou nulo (BIES; HANSEN, 2003; BISTAFA, 2006; Figura 2.12(a)).

Nas frequências próximas e acima da frequência crítica, a separação entre as regiões de pressão máxima e mínima é igual ou maior do que o comprimento de onda do som incidente e as ondas de flexão do painel irradiam som com eficiência. A perda na transmissão sonora no painel fica controlada pela radiação sonora combinada da coincidência e das vibrações ressonantes do painel (Figura 2.12(b)).

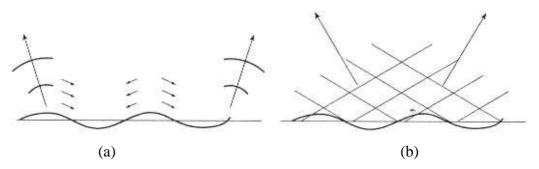


Figura 2.12 – Acoplamento do campo acústico no ar com o movimento de flexão do painel para $f < f_c$ (a) e para $f \ge f_c$ (b) Fontes: BIES; HANSEN, 2003; BISTAFA, 2006

2.3.2.6. Método gráfico para estimativa da perda na transmissão sonora em painéis simples

A perda na transmissão sonora, PT, de painéis pode ser obtida de maneira experimental por meio de ensaios padronizados pela norma ISO 140-3 (ISO, 1995), em uma sala de ensaios dividida por uma parede feita com o material a ser testado em duas câmaras reverberantes (sala da fonte e sala da recepção). Medindo-se o nível de pressão sonora na sala da fonte (L_{p1}) e na sala da recepção (L_{p2}), tem-se a PT, determinada pela equação (BISTAFA, 2006):

$$PT = L_{p1} - L_{p2} + 10\log\left(\frac{S}{A_{recep}^{Sab}}\right)$$
 (dB)

sendo S a área da parede (m²) ensaiada; A_{recep}^{Sab} a absorção sonora (Sabine) na sala de recepção (m²).

Calculando-se a perda na transmissão sonora em laboratório, tem-se o coeficiente de transmissão sonora da parede (τ) por meio da Equação 2.24.

A diferença entre os níveis sonoros das duas salas é chamada de redução de ruído ou *noise* reduction (NR), que é dado por (BISTAFA, 2006):

$$NR = L_{p1} - L_{p2}$$
 (dB) (2.37)

Bies e Hansen (2003) apresentam um método gráfico para estimar a perda na transmissão sonora para painéis isotrópicos e painéis ortotrópicos:

a) Perda na transmissão sonora de painéis isotrópicos

Na Figura 2.13, apresenta-se uma estimativa na perda na transmissão sonora de painéis isotrópicos simples (sólidos e homogêneos).

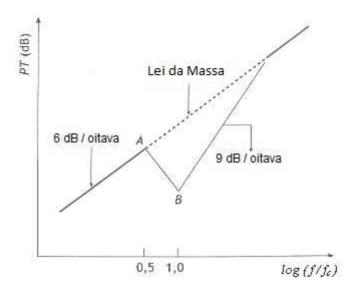


Figura 2.13 – Estimativa da perda na transmissão sonora em painéis isotrópicos Fonte: BIES; HANSEN, 2003

Os pontos A e B possuem coordenadas $(0,5 f_c; PT_A)$ e $(f_c; PT_B)$, respectivamente, de modo que:

$$PT_A = 20log(Mf_c) - 54$$
 (dB) (2.38)

$$PT_B = 20log(Mf_c) + 10log\eta - 45$$
 (dB) (2.39)

sendo M a massa específica superficial do material da parede (kg/m²); f_c a frequência crítica do painel (Hz); η o fator de amortecimento interno do material do painel (adimensional).

A partir do ponto B e f_c , a perda na transmissão é dada pela Equação 2.40, válida para $f > f_c$, aplicada até a frequência para a qual a perda na transmissão é igual àquela calculada usandose a Lei da Massa dada pela Equação 2.28.

$$PT = 20\log(Mf) + 10\log\left(\eta \frac{f}{f_c}\right) - 45 \quad \text{(dB)}$$

O fator de amortecimento interno do material do painel, η (adimensional), é dado pela razão entre a energia dissipada pelo material do painel por ciclo, devido ao atrito interno, e a energia total do sistema durante a vibração. Na Tabela 2.3 são mostrados fatores de amortecimento interno típicos de alguns materiais.

Tabela 2.3. Fatores de amortecimento internos típicos de materiais estruturais, à temperatura ambiente, em movimento vibratório de pequena amplitude e frequências na faixa de áudio¹

	Fator de		Fator de
Material	amortecimento	Material	amortecimento
	interno (η)		interno (η)
Alumínio	10 ⁻⁴	Magnésio	10^{-4}
Latão, bronze	<10 ⁻³	Blocos de cimento	5 a 7 x 10 ⁻³
Tijolo	1 a 2 x 10 ⁻²	Madeira (pinho, carvalho)	$0.8 \text{ a} 1 \text{ x} 10^{-2}$
Concreto leve	1,5 x 10 ⁻²	Argamassa	5 x 10 ⁻³
Concreto poroso	1,5 x 10 ⁻²	Acrílico	2 a 4 x 10 ⁻²
Concreto denso	1 a 5 x 10 ⁻²	Madeira compensada	1 a 1,3 x 10 ⁻²
Cobre	2 x 10 ⁻³	Areia (seca)	0,12 a 0,60
Cortiça	0,13 a 0,17	Aço, ferro	1 a 6 x 10 ⁻⁴
Vidro	0,6 a 2 x 10 ⁻³	Estanho	2 x 10 ⁻³
Placa de gesso (dry-wall)	0,6 a 3 x 10 ⁻²	Placa de fibras de madeira	1 a 3 x 10 ⁻²
Chumbo	0,5 a 2 x 10 ⁻³	Zinco	3 x 10 ⁻⁴

Fonte: BISTAFA, 2006

A perda na transmissão entre $0.5f_c$ e f_c é obtida unindo-se os pontos A e B por uma reta em um gráfico de $PT \times log (f/f_c)$.

b) Perda na transmissão sonora de painéis ortotrópicos

Na Figura 2.14 é mostrada uma curva que representa uma estimativa da perda na transmissão sonora de painéis simples ortotrópicos (sólidos e não homogêneos) ou nervurados (ou ondulados) e pequeno amortecimento.

 $^{\rm 1}$ Faixa de frequência audível para o ouvido humano: de 20 Hz a 20000 Hz.

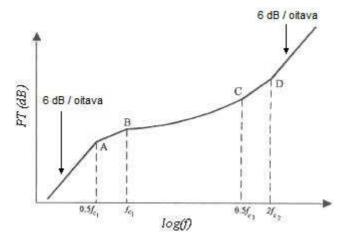


Figura 2.14 – Estimativa da perda na transmissão sonora em painéis ortotrópicos Fonte: BIES; HANSEN, 2003

Os pontos A, B, C e D possuem coordenadas $(0,5 f_{c1}; PT_A)$, $(f_{c1}; PT_B)$, $(0,5 f_{c2}; PT_C)$, $(2f_{c2}; PT_D)$, respectivamente, de modo que:

$$PT_A = 20\log(Mf_{cl}) - 54$$
 (dB) (2.41)

Nos pontos B e C e entre eles, a perda na transmissão é por.

$$PT = 20\log f + 10\log M - 10\log f_{cl} - 20\log \left[\log_e \left(4f/f_{cl}\right)\right] - 13,2$$
 (dB) (2.42)

No ponto D, a perda na transmissão é dada por:

$$PT = 10\log M + 15\log f_{c2} - 5\log f_{c1} - 17 \qquad (dB)$$
 (2.43)

Para painéis mais amortecidos, pode-se aplicar o mesmo processo apresentado na Figura 2.14, fazendo-se $f_c = f_{c2}$. Assume-se para f_{c2} um novo valor determinado pela massa específica superficial total e pela rigidez de um painel plano de mesma espessura que o material original dos painéis nervurados.

2.3.3. Perda na transmissão sonora de paredes duplas

Os painéis duplos são aplicados como solução em projetos de sistemas de fechamento nos quais se pretende obter alta perda na transmissão sem elevar o custo e sem utilizar grandes massas. Na Figura 2.15, tem-se ilustrado o mecanismo de transmissão sonora em uma parede dupla, constituída por dois painéis separados por uma camada de ar. Parte da energia sonora que incide sobre a primeira parede é transmitida e incide sobre a segunda, que também transmite parte dessa energia para o ar do entorno e reflete outra parte. Forma-se então uma sucessão de reflexões durante as quais parte da energia sonora é dissipada.

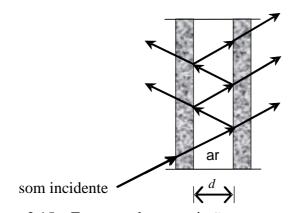


Figura 2.15 – Esquema de transmissão sonora através de paredes duplas Fonte: adaptado de SALES, 2001

Assim como ocorre em paredes simples, o isolamento acústico de uma parede em camadas varia em função da frequência e do ângulo de incidência do som. Espera-se, então, que haja um aumento de 12 dB para cada duplicação de frequência. No entanto, na prática, devido a problemas no contorno e pontes acústicas, esse aumento na perda na transmissão sonora está entre 6 e 8 dB por oitava (MENDEZ et al., 1991 apud SALES, 2001).

Face à complexidade das vias de transmissão da potência sonora entre os painéis, o isolamento acústico não equivale à soma dos isolamentos acústicos individuais. Somente quando as duas paredes estão muito afastadas e os dois painéis isolados entre si, o isolamento acústico das paredes duplas pode ser tomado como a soma aritmética da perda sonora das paredes individuais. A forma de fixação entre os painéis também influencia na eficiência da parede dupla, pois se a união for muito rígida, o conjunto atua como um painel único (SANCHO; SENCHERMES, 1982 apud SALES, 2001).

Para duas paredes idênticas e de mesma espessura em contato direto, ou, sem espaço entre elas, a perda na transmissão sonora é de 6 dB acima da perda na transmissão sonora de apenas uma das paredes. Mas se as duas paredes estão afastadas e isoladas uma da outra, a perda na transmissão sonora é igual ou superior à soma aritmética das perdas de transmissão sonora das duas paredes. Ou seja, sistemas com paredes duplas podem produzir um isolamento sonoro maior que paredes simples, que seguem a Lei da Massa, para uma mesma espessura. Incorporando-se um espaço de ar de 15 a 200 mm entre as paredes, tem-se um aumento na perda na transmissão sonora de aproximadamente 6 dB acima da soma aritmética das perdas de transmissão sonora de cada uma dessas paredes (GERGES, 2000).

As ondas sonoras que incidem a partir de uma fonte fazem o primeiro painel da parede dupla vibrar. A camada de ar entre os painéis funciona como uma mola, formando um sistema massa-ar-massa, transmitindo vibração para o outro painel. Desse modo, a perda na transmissão total para cada painel separadamente é influenciado pela massa de ar do espaço, esteja ele limpo ou preenchido por material absorvedor, em adição ao efeito de perda na transmissão para cada painel isolado (HASSAN, 2009).

Na Figura 2.16, Sancho e Senchermes (1982 apud SALES, 2001), apresentam um esquema da variação da perda na transmissão sonora de uma parede dupla, em função da frequência, no qual se têm os fenômenos que predominam nas regiões distintas.

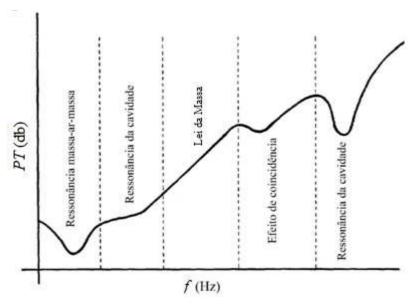


Figura 2.16 – Variação da *PT* em função da frequência para paredes duplas Fonte: SANCHO; SENCHERMES, 1982 apud SALES, 2001

Gerges (2000) apresenta uma equação para o cálculo da perda na transmissão sonora em paredes duplas separadas por uma camada de ar, dada por:

$$PT = PT_1 + PT_2 + 6.0 + 20\log\left(sen\frac{2\pi fd}{c}\right)$$
 (dB)

sendo PT_1 e PT_2 , respectivamente, as perdas de transmissão das paredes simples 1 e 2 (dB); f a frequência da onda sonora (Hz); d o espaçamento entre as paredes (m); c a velocidade da onda sonora no ar (m/s).

O fenômeno da ressonância massa-ar-massa ocorre em uma frequência para a qual as duas paredes formam um sistema mecânico ressonante com a rigidez do volume de ar. Nessa faixa o valor de *PT* tende a cair. O sistema atua como se fosse massa-mola-massa e a ligação elástica entre os elementos de fechamento causa a ressonância do sistema, de frequência dada pela equação (GERGES, 2000).

$$f_{re} = 60\sqrt{\frac{1}{d}\left(\frac{1}{M_1} + \frac{1}{M_2}\right)}$$
 (Hz)

sendo f_{re} a frequência de ressonância do conjunto massa-ar-massa (Hz); d o espaçamento entre as paredes (m); M_1 e M_2 as massas específicas superficiais das paredes (kg/m²).

Além da espessura da cavidade entre os painéis (d), os respectivos pesos são determinantes no cálculo de f_{re} . Se os painéis forem pesados, a frequência de ressonância é baixa. Se a frequência de incidência das ondas sonoras é menor do que a frequência de ressonância, o ar não é eficaz no sistema e a parede tem comportamento de uma parede simples. Caso contrário, o ar transmite mal o movimento de um painel para o outro e a parede dupla possui isolamento melhor do que uma parede simples de mesma massa (MENDEZ et al., 1991 apud SALES, 2001).

Na Equação 2.44, se o termo que contém a função seno apresentar valores nulos, pode haver ressonância acústica na cavidade de ar diminuindo a perda na transmissão sonora, que tende a -∞, sendo recomendado o preenchimento desse espaço com material de absorção acústica

para eliminar as ressonâncias da cavidade. Outra recomendação é utilizar paredes de diferentes espessuras ou materiais para não haver excitação de frequências de ressonância simultaneamente nas duas paredes (GERGES, 2000).

O fenômeno da coincidência também ocorre no caso de paredes duplas. Cada parede simples integrante da parede dupla possui uma frequência crítica e o isolamento sonoro do conjunto tende a diminuir em cada uma dessas frequências. Para dois painéis de frequências críticas diferentes, a curva de isolamento apresenta duas falhas diferentes e se um dos painéis não produz isolamento acústico, o outro produz. Mas, se as duas paredes possuem a mesma frequência crítica, tem-se uma falha maior, o que limita o isolamento por causa das perdas internas das paredes e da camada de ar intermediária (MENDEZ et al., 1991 apud SALES, 2001).

Como nos sistemas de fechamento industrializados são aplicadas multicamadas, devem-se observar os seguintes itens para o uso adequado dos painéis duplos (MENDEZ et al., 1991; SILVA, 2000 apud SALES, 2001):

- usar painéis de diferentes espessuras e/ou materiais para evitar que haja coincidência das frequências críticas;
- o material absorvedor torna mais rígido o acoplamento elástico entre os painéis, elevando a frequência fundamental de ressonância;
- o material absorvedor também dissipa parte da energia sonora, diminuindo a perda de isolamento nas frequências críticas dos painéis da parede;
- o material absorvedor ainda dissipa parte da energia contida entre os painéis, reduzindo o efeito das frequências de ressonância da camada de ar interna;
- no caso de se utilizar materiais isolantes mais rígidos, poliestireno, por exemplo, a
 frequência de ressonância poderá estar mal situada, o que acarreta queda no índice de
 isolamento global do fechamento; no caso de isolantes mais flexíveis, lã mineral, por
 exemplo, o índice de isolamento tende a aumentar.

Salienta-se que é importante uma análise detalhada via Lei da Massa dos painéis em cada camada, para se obter uma análise preliminar do fechamento em multicamadas.

2.3.3.1. Perda na transmissão sonora de paredes duplas segundo Sharp

Para Bies e Hansen (2003) e Bistafa (2006), a isolação sonora de uma parede dupla é melhorada quando os painéis são isolados mecânica e acusticamente um em relação ao outro. A isolação mecânica pode ser conseguida montando-se os painéis em estruturas independentes. A isolação acústica é providenciada quando a cavidade de ar é, em parte, ocupada com material absorvedor.

Observa-se que a perda na transmissão sonora aumenta com o distanciamento dos painéis e a colocação de material absorvedor na cavidade. No entanto, esse material absorvedor não pode formar uma ponte mecânica entre os painéis, devendo-se fixá-lo em um dos painéis para que ele não fique em contato com o outro. Também, esse material deve ser o mais espesso possível, recomendando-se uma espessura mínima de 15/f, sendo f a menor frequência de interesse (Figura 2.17). Além disso, para melhores resultados, segundo Bies e Hansen (2003), os painéis devem ser isotrópicos (sólidos e homogêneos).

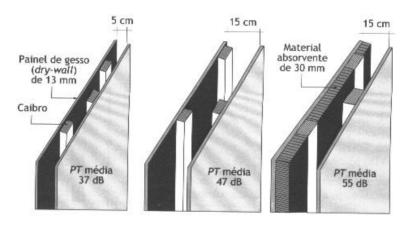


Figura 2.17 – PT média em paredes duplas com diferentes distâncias entre painéis montados em caibros independentes

Fonte: BISTAFA, 2006

Em geral, as seguintes frequências são introduzidas:

- a menor frequência de coincidência ou frequência crítica dos dois painéis (f_{c1} e f_{c2}), calculadas pela Equação 2.35;
- a menor frequência de ressonância do conjunto massa-ar-massa (f_0), dada por (BIES; HANSEN, 2003; BISTAFA, 2006; HASSAN, 2009):

$$f_0 = \frac{1}{2\pi} \left(\frac{1.8\rho c^2 (M_1 + M_2)}{dM_1 M_2} \right)^{1/2}$$
 (Hz)

ou, para $\rho_{ar} = 1.21 \text{ kg/m}^3$,

$$f_0 = 80 \left(\frac{M_1 + M_2}{dM_1 M_2} \right)^{1/2}$$
 (Hz)

 a frequência limite (f_l) relacionada à largura da cavidade entre os painéis (d), dada por (BIES; HANSEN, 2003):

$$f_l = \frac{c}{2\pi} = \frac{55}{d} \text{ (Hz)}$$

sendo ρ a massa específica do material (kg/m³); c a velocidade do som no ar (m/s); d o espaçamento entre as paredes ou a espessura da cavidade (m); M_1 e M_2 as massas específicas superficiais das paredes (kg/m²).

Sharp (1978 apud BIES; HANSEN, 2003), introduz, para paredes duplas constituídas por painéis completamente isolados mecânica e acusticamente, as seguintes expressões para o cálculo da perda na transmissão sonora:

$$PT = \begin{cases} PT_{M} & f = f_{0} \\ PT_{1} + PT_{2} + 20log fd - 29 & f_{0} < f < f_{l} \\ PT_{1} + PT_{2} + 6 & f = f_{l} \end{cases}$$
 (dB) (2.49)

Nas Equações 2.49, PT_1 , PT_2 e PT_M são obtidos substituindo-se M na Equação 2.29 pelos valores de massas específicas superficiais dos respectivos painéis, M_1 , M_2 , e a massa específica superficial total $M = M_1 + M_2$, respectivamente. Mas, na prática, essas equações são difíceis de serem determinadas, pois devem ser considerados os efeitos de fixação dos painéis, que determinam a eficiência de sua transmissão sonora. Os painéis podem ser fixados

em um mesmo caibro ou perfil metálico, por meio de barras resilientes de modo a reduzir a transmissão de vibrações mecânicas (Figura 2.18).

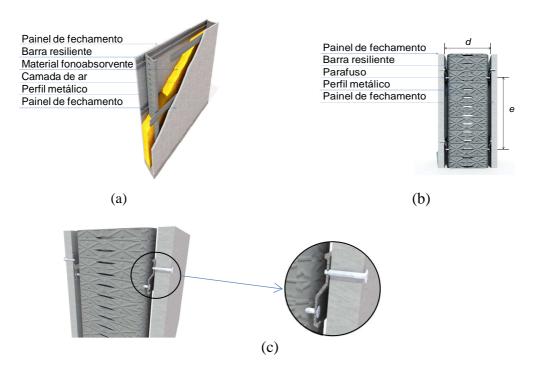


Figura 2.18 – Painéis fixados em perfis metálicos por meio de barras resilientes (a); fixação do painel no perfil metálico (b); detalhe dos parafusos acoplados à barra resiliente (c)

Fonte: adaptado de BISTAFA, 2003

Há duas formas usuais de ligação entre os painéis que geram quatro possíveis combinações de fixação. Quando o painel é fixado diretamente no caibro ou perfil metálico, é gerada uma linha de contato entre esses dois elementos, formando-se a chamada *fixação em linha*. Nesse caso, o espaçamento entre os caibros ou perfis, *b*, é suposto uniforme. A fixação por meio de barras resilientes é chamada de *fixação pontual*. As quatro possíveis combinações de fixação são linha-linha (LL), linha-pontual (LP), pontual-linha (PL) e pontual-pontual (PP). O espaçamento entre os diversos pontos de fixação ou parafusos, *e*, também é suposto uniforme. Lembra-se que *d* é a profundidade da cavidade formada entre os dois painéis (BIES; HANSEN, 2003; BISTAFA, 2006; Figura 2.19).

Bies e Hansen (2003) e Bistafa (2006) apresentam um método gráfico simplificado baseado na análise de Sharp (1973), *Sharpe's analysis*, para a estimativa da perda na transmissão sonora de paredes duplas, que é aplicado no caso de fixação em linha ou pontual quando os painéis são fixados no mesmo caibro ou perfil metálico. Esse método gráfico consiste na

determinação das coordenadas dos pontos A, B e C e da abscissa do ponto D, por meio de formulação, e na estimativa das coordenadas do ponto A' e da ordenada do ponto D (Figura 2.20). Na formulação apresentada, o número 1 é associado ao painel que possui a menor frequência crítica, sendo essa frequência no máximo igual à frequência crítica do outro painel, ao qual se associa o número 2.

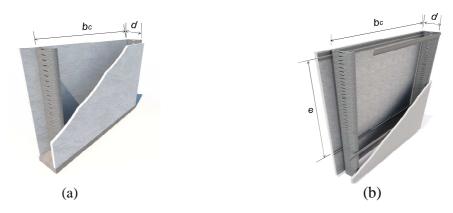


Figura 2.19 – Fixação de painéis: em linha (a); fixação pontual (b) Fonte: adaptado de BISTAFA, 2006

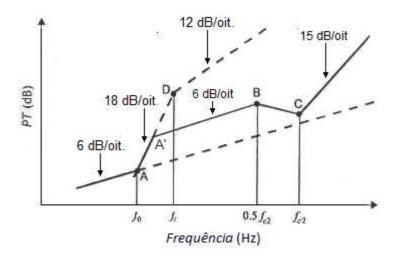


Figura 2.20 – Gráfico para estimativa da *PT* em paredes duplas com painéis fixados no mesmo caibro ou perfil metálico
Fontes: BIES; HANSEN, 2003; BISTAFA, 2006

A combinação pontual-linha é excluída desse estudo, pois a perda na transmissão a ela associada é sempre menor do que a da combinação linha-pontual. Ou seja, ao se considerar a fixação pontual, melhores resultados são obtidos quando o painel com a maior frequência crítica é fixado pontualmente (BIES; HANSEN, 2003; BISTAFA, 2006).

As coordenadas dos pontos A, B, C e D, observados na Figura 2.20, são dadas conforme as equações apresentadas na Tabela 2.4.

Tabela 2.4. Coordenadas dos pontos A, B, C e D (Figura 2.20)

Ponto e coordenadas	Equações	
$\begin{array}{c} \text{A} \\ (f_0; PT_A) \end{array}$	$PT_A = 20\log(M_1 + M_2) + 20\log(_0 - 48)$	(2.50)
	a) Quando não há material absorvedor de som na cavidade, PT_B é igual a PT_{BI} dada por:	
	$PT_{BI} = PT_A + 20\log\left(\frac{f_{cI}}{f_0}\right) - 6$	(2.51)
	b) Quando há material absorvedor de som na cavidade, PT_B é dada pelo maior valor entre PT_{B1} e PT_{B2} , acrescido de 4, sendo PT_{B2} dada por:	
	i) fixação linha-linha:	
B $(0.5 f_{c2}; PT_B)$	$PT_{B2} = 20\log M_1 + 10\log b_c + 30\log f_{c2} + 20\log \left[1 + \frac{M_2 f_{c1}^{1/2}}{M_1 f_{c2}^{1/2}}\right] - 78$	(2.52)
	ii) fixação linha-pontual:	
	$PT_{B2} = 20\log M_{1}e + 40\log f_{c2} - 99$	(2.53)
	iii) fixação pontual-pontual:	
	$PT_{B2} = 20\log M_{1}e + 40\log f_{c2} - 97$ ou	(2.54)
	$PT_{B2} = 20\log M_{1}e + 40\log f_{c2} + 20\log \left[1 + \frac{M_{2}f_{cI}}{M_{1}f_{c2}}\right] - 105$	(2.55)
C	a) Para $f_{c2} \neq f_{c1}$: $PT_C = PT_B + 10\log \eta_2 + 6$	(2.56)
$(f_{c2}; PT_C)$	b) Para $f_{c2} = f_{c1}$: $PT_C = PT_B + 10\log \eta_2 + 5\log \eta_1 + 6$	(2.57)
D	$f_l = \frac{55}{d}$	(2.58)
$(f_l; PT_D)$	PT_D é determinado graficamente	
E + DIEG I	LANCEN 2002, DICTAEA 2006	J

Fontes: BIES; HANSEN, 2003; BISTAFA, 2006

Os parâmetros presentes nas expressões apresentadas na Tabela 2.4 são: f_0 a menor frequência de ressonância (Hz); PT a perda na transmissão sonora (dB); d o espaçamento entre as paredes (m); M_1 e M_2 as massas específicas superficiais das paredes (kg/m²); f_{ci} a frequência crítica do painel i (Hz); b_c o espaçamento entre caibros na fixação em linha (m); e o espaçamento entre parafusos na fixação pontual (m); η_i o fator de amortecimento interno

do material do painel i; f_l a frequência limite associada ao ponto D (Hz). Observa-se que esse método gráfico admite a desigualdade $Mf > 2(\rho c)_{ar}$.

Para Bies e Hansen (2003) e Hassan (2009), em montagens de paredes duplas, podem ser utilizados painéis de espessuras ou materiais diferentes, para que se obtenham diferentes curvas de perda na transmissão sonora.

Pode-se montar um painel bem amortecido justapondo-se dois painéis menos espessos e colando-os em pontos regularmente espaçados, de modo que seja formada uma malha. O pequeno movimento entre os painéis provoca um amortecimento causado pela perda de energia por atrito que ocorre no movimento relativo dos painéis (BIES; HANSEN, 2003; BISTAFA, 2006; Figura 2.21).

Normalmente, paredes duplas com painéis montados em caibros independentes são utilizadas visando alta perda na transmissão sonora. Nesse caso, o apoio comum entre os painéis opostos ocorre no perímetro da montagem e, na estimativa da perda na transmissão, esse tipo de construção pode ser modelado como uma parede dupla com fixação nas bordas (BIES; HANSEN, 2003; BISTAFA, 2006; Figura 2.17).

Caibros adicionais tendem a reduzir a perda na transmissão, pois a transmissão estrutural torna-se mais eficaz. Quando pelo menos um dos painéis não for bem amortecido, a parede dupla pode ser modelada como uma parede com fixação nas bordas, o que tende a elevar ligeiramente a *PT*. O painel ainda pode ter uma de suas faces revestida com material viscoelástico, observando-se que, para uma melhor eficácia, a espessura do revestimento deve ser pelo menos igual à do painel (BIES; HANSEN, 2003; BISTAFA, 2006).

Figura 2.21 – Painéis justapostos e colados

2.4. Efeito das aberturas na perda na transmissão sonora de paredes

Conforme apresentado no Item 2.3, em fechamentos que apresentam elementos como janelas, portas, aberturas para ventilação, dentre outros, a perda na transmissão sonora é obtida a partir da perda na transmissão desses elementos individualmente, pela equação:

$$PT_c = 10\log\frac{1}{\tau_c} \tag{2.59}$$

sendo PT_c a perda na transmissão da parede composta; τ_c o coeficiente de transmissão sonora da parede composta dado pelas Equações 2.23 e 2.24.

Se a parede for constituída por apenas dois elementos, pode-se aplicar o gráfico da Figura 2.22, que fornece a perda na transmissão incremental δPT em função da razão das áreas S_1/S_2 , sendo S_1 a área do componente com menor perda na transmissão. A perda na transmissão incremental deve ser adicionada à menor PT para se obter a PT da parede composta (BIES; HANSEN, 2003; BISTAFA, 2006).

$$PT_c = PT_1 + \delta PT \tag{2.60}$$

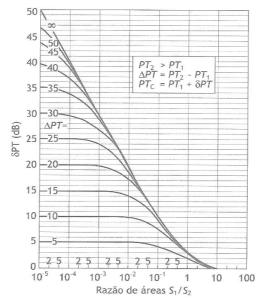


Figura 2.22 – Gráfico para a determinação da *PT* de paredes compostas por dois elementos
Fonte: BISTAFA, 2006

2.5. Perda na transmissão sonora por flancos

A perda na transmissão sonora por flancos é expressa pela perda que ocorre em cada caminho de transmissão sonora PT_{ij} vindo da sala onde se encontra a fonte sonora, dada pela equação (HASSAN, 2009; Figura 2.23):

$$PT_{ij} = 10\log\frac{W_{1,0}}{W_{2\,ii}} \tag{2.61}$$

sendo $W_{1,0}$ a potência sonora incidente na partição que separa os dois recintos (caminho 1; Figura 2.6); $W_{2,ij}$ é a potência sonora transmitida ou irradiada para a sala receptora vindo do respectivo caminho de transmissão.

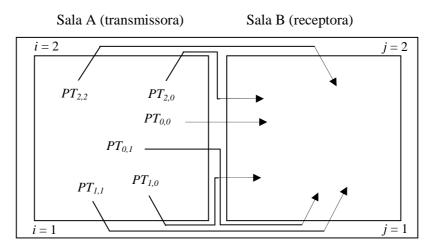


Figura 2.23 – Perda na transmissão sonora direta e por flancos entre duas salas adjacentes Fonte: HASSAN, 2009

Na Figura 2.23, mostra-se a definição de perda na transmissão sonora de flancos PT_{ij} na seção transversal de dois recintos adjacentes com uma partição comum. O piso dos recintos é denotado por i = 1, j = 1 e a cobertura por i = 2, j = 2. Para os outros dois lados da parede no plano vertical, aplica-se a mesma definição, mas com i = 3, j = 3 para um lado da parede e i = 4, j = 4 para o outro. PT_0 corresponde à perda na transmissão sonora que ocorre diretamente via partição comum.

3. DESEMPENHO TÉRMICO E ACÚSTICO DE EDIFICAÇÕES

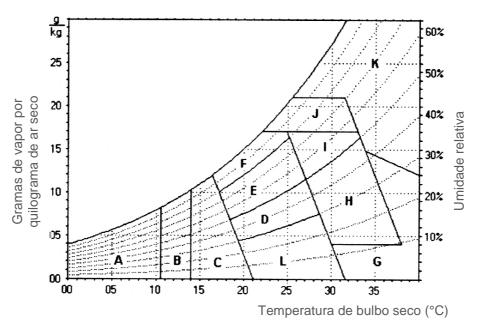
O aumento da aplicação de construções industrializadas traz uma preocupação crescente quanto ao conforto humano a que os usuários estarão sujeitos no interior das edificações. Em se tratando de construções metálicas, projetistas buscam materiais de fechamento que proporcionem isolamento térmico e acústico adequado. Essa compatibilização deve ser verificada de maneira criteriosa, posto que materiais que apresentam desempenho acústico e isolação sonora satisfatórios podem, por possuírem baixa inércia térmica, não proporcionar bom isolamento térmico.

O tipo e a localização da edificação, bem como a atividade desenvolvida em seu interior, são fatores determinantes dos limites de conforto. O conforto térmico e acústico é alcançado quando as condições do ambiente encontram-se em uma faixa de valores para temperatura, umidade relativa do ar e ruído na qual os usuários da edificação sintam-se confortáveis. Recorre-se então a níveis mínimos aceitáveis estabelecidos com referência a regulações apropriadas para o local em questão. Normas de desempenho, traduzidas em requisitos e critérios, são estabelecidas visando atender as exigências dos usuários.

Nesse capítulo, aborda-se o desempenho térmico e acústico de edificações, mostrando níveis mínimos de desempenho térmico e acústico para os elementos de uma edificação exigidos pela norma brasileira NBR 15575 (ABNT, 2013). Essa norma trata do desempenho de edificações habitacionais, independentemente dos seus materiais constituintes e do sistema construtivo adotado, e dentre seus itens encontram-se os desempenhos térmico e acústico.

3.1. Desempenho térmico

O desempenho térmico de uma edificação está relacionado a uma resposta adequada às condições climáticas e ao entorno da edificação que resulte em condições térmicas internas apropriadas. A avaliação do desempenho térmico é feita visando proporcionar condições de conforto térmico que atendam às exigências dos usuários e racionalizem o consumo de energia. Essa avaliação consiste em verificar se as condições do ambiente construído são satisfatórias para os ocupantes, analisando-se a resposta global da edificação às trocas de calor e massa entre o ambiente interno e externo.


A caracterização do comportamento térmico de uma edificação não deve ser feita apenas sobre parâmetros previamente definidos, como a resistência térmica dos elementos de fechamento. Além disso, é necessário considerar as trocas térmicas dinâmicas que ocorrem nos ambientes. Dessa forma, para atender às exigências de desempenho térmico, a edificação deve possuir características que levem em consideração a sua região de implantação, as respectivas características bioclimáticas e o comportamento interativo entre fachada, cobertura e piso (AKUTSU, 1998; ABNT, 2005a).

As condições climáticas no país são caracterizadas por valores horários de temperatura e umidade relativa do ar, radiação solar incidente em superfície horizontal e pela velocidade média do vento predominante nos dias típicos de projeto de verão e de inverno. A norma NBR 15575 (ABNT, 2013) define dia típico de projeto de verão (inverno) como um dia real, caracterizado por esses parâmetros para o dia mais quente (frio) do ano segundo a média do período dos últimos dez anos.

Givoni (1992) propõe uma carta bioclimática que estende a aplicação da bioclimatologia à arquitetura, baseando-se em temperaturas internas de uma edificação e aproveitando suas características para satisfazer as exigências de conforto térmico dos seus usuários. A norma NBR 15220 (ABNT, 2005a) adota uma carta bioclimática adaptada a partir da sugerida por Givoni (1992), que mostra estratégias de condicionamento térmico passivo a partir de experiências acadêmicas e profissionais de especialistas de comissões de estudo e de alguns aspectos da cultura construtiva inerente a cada região (GOULART et al.,1994; Figura 3.1).

A norma NBR 15220 (ABNT, 2005a) propõe também um mapa de zoneamento bioclimático que divide o território brasileiro em oito zonas relativamente homogêneas quanto ao clima. Para cada região delimitada, há diretrizes construtivas que conjugam as estratégias de condicionamento térmico passivo com os limites aceitáveis de indicadores do desempenho térmico (Figura 3.2).

Os dados mensais de temperatura e umidade do ar são representados por uma reta sobre o mapa para cada mês do ano e para cada localidade. Plotando-se os dados das normais climatológicas de cada cidade, obtêm-se as percentagens de cada estratégia acumuladas ao longo de um ano, o que permite classificar o clima de uma cidade em uma das oito zonas bioclimáticas. Para as cidades onde não há medições de dados climáticos, o clima é estimado por meio de interpolação (WESTPHAL; LAMBERTS, 2005).

- A Zona de aquecimento artificial (calefação)
- B Zona de aquecimento solar da edificação
- C Zona de massa térmica para aquecimento
- D Zona de conforto térmico (baixa umidade)
- E Zona de conforto térmico
- F Zona de desumidificação (renovação do ar)
- G+H Zona de resfriamento evaporativo
- H+I Zona de massa térmica de refrigeração
- I+J Zona de ventilação
- K Zona de refrigeração artificial
- L Zona de umidificação do ar

Figura 3.1 – Carta bioclimática adaptada Fonte: NBR 15220 (ABNT, 2005a)

A norma NBR 15575 (ABNT, 2013) apresenta condições térmicas no interior da edificação que sejam melhores ou iguais às do ambiente externo, à sombra, para o dia típico de projeto de verão, e que propiciem conforto térmico no interior da edificação, no dia típico de projeto de inverno. Assim, são estabelecidos valores máximos e mínimos diários de temperatura do ar interior de recintos de permanência prolongada, para os dias típicos de verão e de inverno, respectivamente.

3.2. <u>Desempenho térmico segundo a norma NBR 15575 (ABNT, 2013)</u>

A norma NBR 15575 (ABNT, 2013) pode ser utilizada para a avaliação do desempenho de edifícios habitacionais e apresenta procedimentos de verificação do atendimento aos requisitos e critérios dos usuários referentes ao desempenho de fachadas, coberturas e sistemas de fechamento. Essa verificação pode ser feita por meio de simulação computacional do desempenho térmico de edificações e de medições em edificações e protótipos.

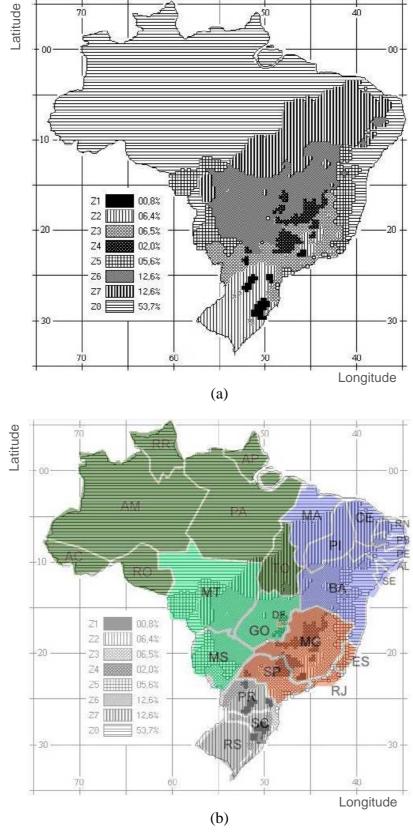


Figura 3.2 – Mapa do zoneamento bioclimático brasileiro (a); sua sobreposição com o mapa político brasileiro (b)

Fontes: NBR 15220 (ABNT, 2005a); DUARTE (s.d.)

Para o critério mínimo de avaliação de desempenho térmico, via simulação computacional ou medição *in loco*, propõe-se que os seguintes critérios de exigências de desempenho sejam atendidos:

- a) No verão, o valor máximo diário da temperatura do ar interior de recintos de permanência prolongada, como salas e dormitórios, sem a presença de fontes internas de calor (ocupantes, lâmpadas, outros equipamentos em geral), deve ser sempre menor ou igual ao valor máximo diário da temperatura do ar exterior.
- b) No inverno, o valor mínimo diário da temperatura do ar interior de recintos de permanência prolongada, como salas e dormitórios, no dia típico de projeto de inverno, deve ser sempre maior ou igual à temperatura mínima externa acrescida de 3°C, sendo que, para as zonas bioclimáticas 6, 7 e 8, esse critério não precisa ser verificado.

Tanto no caso de edificações em fase de projeto quanto no caso de edificações construídas, a avaliação deve ser feita para um dia típico de projeto, de verão e de inverno. Devem-se utilizar os dados climáticos da cidade onde será localizada a edificação. Os valores da temperatura do ar exterior desses dias típicos referentes a diversas localidades são apresentados em tabelas. Caso não existam registros para a cidade em questão, utilizam-se os dados climáticos da cidade mais próxima, dentro da mesma zona bioclimática, e características climáticas semelhantes. As propriedades térmicas dos materiais que são utilizadas nesses casos também são tabeladas por norma.

3.2.1. Edificações em fase de projeto

A avaliação do desempenho térmico de edificações em fase de projeto deve ser feita por meio de simulações computacionais.

Em conjuntos habitacionais ou edifícios multipiso, recomenda-se selecionar unidades representativas. No caso de conjunto habitacional de edificações térreas, deve-se selecionar uma unidade habitacional com o maior número de paredes expostas e, no caso de edifícios multiuso, deve-se selecionar uma unidade do último andar, com cobertura exposta.

Para esses casos e para unidades habitacionais isoladas, todos os recintos da unidade habitacional devem ser simulados, considerando-se as trocas térmicas entre os ambientes, e avaliam-se os resultados dos dormitórios e salas.

Os recintos adjacentes, de outras unidades habitacionais, separados por paredes de geminação

ou entrepisos, são considerados com a mesma condição térmica do ambiente a ser simulado.

A edificação deve ser orientada conforme a implantação e a unidade habitacional escolhida para a simulação deve ser a mais crítica do ponto de vista térmico. Se a orientação não estiver definida, a edificação deve ser posicionada tal que a unidade a ser avaliada tenha a pior condição do ponto de vista térmico, sugerindo-se:

- no verão, que a janela do dormitório ou sala esteja voltada para oeste e outra parede exposta voltada para leste e, se isso não for possível, o ambiente deve ter pelo menos uma janela voltada para oeste;
- no inverno, a janela do dormitório ou sala esteja voltada para o sul e outra parede exposta voltada para norte e, se isso não for possível, o ambiente deve ter pelo menos uma janela voltada para o sul;
- considerar que as paredes expostas e as janelas estejam desobstruídas, ou seja, sem edificações ou vegetação próximas que possam modificar a incidência de sol e/ou vento. Mas se as edificações forem de um mesmo complexo, elas podem ser consideradas, desde que sejam para habitação no mesmo período e essa informação deve constar na documentação de comprovação de desempenho;
- se nas janelas forem previstos dispositivos de sombreamento externo, tais como para-sois, marquises e beirais, eles devem ser considerados na simulação.

Para a taxa de ventilação do ambiente (renovação do volume do ar no ambiente por hora), adota-se 1 renovação por hora (1 ren/h). A edificação que não atender aos critérios estabelecidos para o verão deve ser simulada novamente considerando-se as seguintes modificações no projeto:

- ventilação: adotar a taxa de ventilação de 5 ren/h e janelas sem sombreamento;
- sombreamento: inserção de dispositivos capazes de cortar no mínimo 50% da radiação solar direta que entraria pela janela, com taxa de ventilação de 1 ren/h;
- ventilação e sombreamento: combinação das duas estratégias anteriores, ou seja, inserção de dispositivo de proteção solar e taxa de ventilação de 5 ren/h.

No entanto, Costa (2005) recomenda que as simulações sejam feitas com até 3 ren/h, pois valores elevados desse índice podem provocar deslocamento de ar excessivo na área de ocupação.

A absortância à radiação solar das superfícies expostas deve ser definida conforme a cor e as características das superfícies externas da cobertura e das paredes expostas conforme:

• cobertura: valor especificado no projeto, correspondente ao material previsto;

• parede: assumir o valor da absortância à radiação solar correspondente à cor definida no

projeto e, se a cor não estiver definida, simular para três alternativas de cor:

- cor clara: $\alpha = 0.3$;

- cor média: $\alpha = 0.5$;

- cor escura: $\alpha = 0.7$.

salas, a 1,20 m do piso.

3.2.2. Edificações construídas

A avaliação do desempenho térmico de edificações construídas pode ser feita por meio de medições, considerando-se todas as variáveis de projeto da unidade habitacional na condição em que se encontram no momento da avaliação, como orientação solar e cor do fechamento externo. São feitas medições da temperatura de bulbo seco do ar no centro de dormitórios e

No caso de um conjunto habitacional de unidades térreas e edifícios multipiso, devem-se escolher uma ou mais unidades que possibilitem a avaliação nas condições seguintes: verão: janela do dormitório ou sala voltada para oeste e outra parede exposta voltada para o norte; inverno: janela de dormitório ou sala de estar voltada para o sul e outra parede exposta voltada para o leste; no caso de edifício multipiso, devem ser escolhidas unidades do último andar.

Se as orientações das janelas não corresponderem exatamente a essas especificações, devem ser priorizadas as unidades que tenham o maior número de paredes expostas e cujas orientações das janelas sejam mais próximas da orientação especificada.

Para a avaliação em protótipos, recomenda-se que sejam construídos considerando-se as condições seguintes: nas regiões bioclimáticas 6 a 8, protótipo com janela do dormitório ou sala voltada para o oeste; nas regiões 1 a 5, deve-se construir um protótipo que atenda, na condição de inverno, janela do dormitório ou sala de estar voltada para o sul e outra parede exposta voltada para o leste, e, na condição de verão, janela do dormitório ou sala voltada para o oeste e outra parede exposta voltada para o norte. As paredes e as janelas dos

59

protótipos devem estar desobstruídas de modo a haver nelas a incidência de sol e/ou vento.

O protótipo deve reproduzir as condições semelhantes àquelas que serão obtidas pela edificação real, evitando-se desvios de resultados devidos à adoção de sombreamentos ou ventilação diferentes.

Quanto ao período de medição, o dia tomado para análise deve corresponder a um dia típico de projeto, de verão ou de inverno, precedido por, pelo menos, um dia com características semelhantes. Recomenda-se utilizar uma sequência de três dias e analisar os dados do terceiro dia. O dia típico, para a avaliação por medição, é caracterizado unicamente pelos valores da temperatura do ar exterior medidos no local.

3.2.3. Resistência térmica dos materiais de fechamento

A avaliação do desempenho térmico de uma edificação pode ser baseada na resistência térmica ou no seu inverso, que é o coeficiente global de transmissão de calor, também chamado de transmitância térmica dos elementos dessa edificação. A resistência térmica representa a capacidade que o fechamento possui em reter o calor, ou seja, sua eficiência em relação à transferência de calor, e a transmitância térmica é a sua capacidade de transmitir calor. A resistência térmica dos elementos de uma edificação é dada pelo quociente da diferença de temperatura verificada entre as superfícies (gradiente térmico) pelo fluxo de calor em regime estacionário (ABNT 2005a):

$$R = \frac{\Delta T}{q} = \frac{\text{gradiente térmico}}{\text{fluxo de calor}}$$
(3.1)

Então,

$$q'' = \frac{\Delta T}{R}$$
 ou $q'' \equiv U\Delta T$ (3.2)

e,

$$R = \frac{h}{k_{\star}} \tag{3.3}$$

sendo R a resistência térmica de um componente construtivo (m²K/W ou m²°C/W); q" o fluxo de calor (W/m²); ΔT o gradiente térmico (K); h a espessura do fechamento (m); k_t a condutividade térmica do material (W/mK); A a área de troca de calor (m²); U o coeficiente global de transmissão de calor (W/m²K) ou transmitância térmica, dado por:

$$U = \frac{1}{R_{eq}} \tag{3.4}$$

sendo R_{eq} a resistência térmica equivalente, que, para fechamentos em multicamadas, é dada pelas resistências de superfície a superfície e de ambiente a ambiente:

a) De superfície a superfície, a resistência térmica de um componente plano constituído de camadas homogêneas perpendiculares ao fluxo de calor, R_t , é dada conforme:

$$R_t = R_{t1} + R_{t2} + \dots + R_{tn} + R_{ar1} + R_{ar2} + \dots + R_{arn}$$
(3.5)

sendo R_{t1} , R_{t2} , ..., R_{tn} as resistências térmicas das n camadas homogêneas; R_{ar1} , R_{ar2} ,..., R_{arn} as resistências térmicas das n camadas de ar

b) De ambiente a ambiente, a resistência térmica total, R_T , é dada pelo somatório do conjunto de resistências térmicas correspondentes às camadas de um elemento ou componente, incluindo as resistências superficiais interna e externa:

$$R_T = R_{se} + R_t + R_{si} \tag{3.6}$$

sendo R_t a resistência térmica de superfície a superfície; R_{se} e R_{si} as resistências das camadas de ar adjacentes às superfícies externa e interna, respectivamente, de um componente que transfere calor por radiação e/ou convecção.

A resistência térmica superficial varia de acordo com fatores tais como emissividade, velocidade do ar sobre a superfície e temperatura da superfície, do ar e superfícies próximas (ABNT, 2005a). Os valores médios recomendados são mostrados na Tabela 3.1.

Tabela 3.1. Valores médios recomendados de resistências térmicas superficiais interna (R_{si}) e externa (R_{se})

R_{si} (m ² K)/W				R_{se} (m ² K)/W	
Direção do fluxo de calor		Direção do fluxo de calor			
Horizontal	Ascendente	Descendente	Horizontal	Ascendente	Descendente
\Rightarrow	Û	<u>T</u>	⇒	Û	1
0,13	0,10	0,17	0,04	0,04	0,04

Fonte: NBR 15220 (ABNT, 2005a)

3.2.4. Verificação dos níveis mínimos de desempenho térmico dos fechamentos verticais externos

Para adequação das paredes externas, em função das necessidades básicas de segurança, saúde, higiene e de economia, são admitidos valores de transmitância (*U*) e capacidade térmica (*C*) que proporcionem o desempenho térmico mínimo estabelecido, conforme apresentado nas Tabelas 3.2 e 3.3, para cada zona bioclimática, aplicando-se os cálculos conforme a norma NBR 15220 (ABNT, 2005a).

Tabela 3.2. Transmitância térmica de paredes externas

Transmitância Térmica (U) $W/(m^2K)$			
Zonas 1 e 2	Zonas 3, 4, 5, 6, 7 e 8		
<i>U</i> ≤ 2,5	$\alpha_P \leq 0.6$	$\alpha_P > 0.6$	
$U \leq 2,3$	<i>U</i> ≤ 3,7	$U \le 2,5$	

Fonte: NBR 15575 (ABNT, 2013)

sendo α_P a absortância à radiação solar da superfície externa da parede.

Tabela 3.3. Capacidade térmica de paredes externas

Capacidade térmica (C) kJ/(m ² K)	
Zonas 1, 2, 3, 4, 5, 6 e 7	Zona 8
≥ 130	Sem exigência

Fonte: NBR 15575 (ABNT, 2013)

Para adequação das aberturas de ventilação nas fachadas das habitações, as mesmas devem possuir dimensões de modo a proporcionar a ventilação interna adequada nos ambientes de longa permanência, tais como salas, cozinhas e dormitórios. Os valores mínimos para as áreas das aberturas para ventilação (A_v) são mostrados na Tabela 3.4.

Tabela 3.4. Áreas mínimas de aberturas para ventilação

	Aberturas para ventilação (A_{ν})		
Nível de	em % da área do piso		
desempenho	Zonas 1 a 7 Zona 8		
	Aberturas médias Aberturas grandes		
Mínimo	$A_{\nu} \ge 7$	$A_{\nu} \ge 12$ (região norte)	$A_{\nu} \ge 8$ (região nordeste e sudeste)

Fonte: NBR 15575 (ABNT, 2013)

3.2.5. Verificação dos níveis mínimos de desempenho térmico de coberturas

Para a isolação térmica da cobertura, devem ser aplicados materiais de transmitância térmica e absortância à radiação solar que proporcionem um desempenho térmico apropriado para cada zona bioclimática. Dessa forma, encontram-se na Tabela 3.5 os valores máximos admissíveis para a transmitância térmica (U) das coberturas, aplicando-se os cálculos conforme a norma NBR 15220 (ABNT, 2005a).

Tabela 3.5. Critérios de coberturas quanto à transmitância térmica

	Transmitância térmica (U) $W/(m^2K)$				
	Zonas 1 e 2	Zonas 3 a 6		Zonas 7 e 8	
Ī	11/22	$a_c \leq 0.6$	$\alpha_c > 0.6$	$a_c \leq 0,4$	$\alpha_c > 0,4$
	$U \leq 2,3$	$U \le 2,30$	<i>U</i> ≤ 1,5	$U \le 2,3 FT$	$U \le 1,5 FT$

Fonte: NBR 15575 (ABNT, 2013)

sendo α_c a absortância à radiação da superfície da cobertura (adimensional); FT o fator de correção da transmitância (adimensional), estabelecido pela norma NBR 15220 (ABNT, 2005a).

Caso as coberturas não atendam ao critério simplificado mostrado na Tabela 3.5, deve ser feita a verificação do desempenho térmico da edificação como um todo. Se no projeto houver previsão de isolação térmica, deve-se fazer referência às normas brasileiras pertinentes.

3.2.6. Valores máximos e mínimos de temperatura

Para maior conforto dos usuários, recomendam-se os valores de temperatura conforme apresentados nas Tabelas 3.6 e 3.7, para os níveis intermediário (I) e superior (S).

Tabela 3.6. Critério de avaliação de desempenho térmico para condições de verão

Nível de desempenho	Critério		
Niver de desempenno	Zonas 1 a 7	Zona 8	
Mínimo (M)	$T_{i,max} \leq T_{e,max}$		
Intermediário (I)	$T_{i,max} \leq (T_{e,max} - 2 ^{\circ}\text{C})$	$T_{i,max} \leq (T_{e,max} - 1 ^{\circ}\text{C})$	
Superior (S)	$T_{i,max} \leq (T_{e,m\acute{a}x} - 4 ^{\circ}\text{C})$	$T_{i,max} \leq (T_{e,max} - 2 ^{\circ}\mathrm{C})$	

Fonte: NBR 15575 (ABNT, 2013)

Tabela 3.7. Critério de avaliação de desempenho térmico para condições de inverno

Níval da dacampanha	Critério		
Nível de desempenho	Zonas 1 a 5	Zonas 6, 7 e 8	
M	$T_{i,min} \geq (T_{e,min} + 3 ^{\circ}\text{C})$		
I	$T_{i,min} \geq (T_{e,min} + 5 {}^{\circ}\mathrm{C})$	Não precisa ser verificado	
S	$T_{i,min} \geq (T_{e,min} + 7 ^{\circ}\text{C})$		

Fonte: NBR 15575 (ABNT, 2013)

sendo $T_{i,max}$ o valor máximo diário da temperatura do ar no interior da edificação (°C); $T_{e,max}$ o valor máximo diário da temperatura do ar no exterior da edificação (°C); $T_{i,min}$ o valor mínimo diário da temperatura do ar no interior da edificação (°C); $T_{e,min}$ o valor mínimo diário da temperatura do ar no exterior da edificação (°C).

3.3. Desempenho acústico

Todo ruído se torna um problema quando interfere nas atividades humanas. Essa interferência depende do tipo de atividade que está sendo exercida e a reação das pessoas frente ao ruído depende de fatores tais como audibilidade, distribuição espectral, hora de ocorrência, duração, dentre outros. Dessa forma, métodos de avaliação de ruídos, associados a critérios de aceitabilidade que refletem o grau de incômodo e interferência com as atividades humanas, vêm sendo desenvolvidos, considerando fatores físicos e comportamentais que sejam significativos para situações específicas. Esse procedimento torna objetiva a avaliação de

ruído permitindo classificações e comparações que formam a base de normas e legislações. Avaliar problemas de ruído é complexo, em razão de sua natureza ser bastante variável (BISTAFA, 2006).

Para Bies e Hansen (2003), é mais fácil implementar estratégias de controle de ruído em novos produtos do que em produtos existentes. Muitas vezes, fica dispendioso eliminar inteiramente os ruídos ou é impossível fazê-lo. Pode-se dizer o mesmo para construções, que devem ser planejadas com materiais e métodos que possam atender a diferentes exigências de usuários em edificações de usos variados.

O conforto acústico dos usuários de uma edificação é obtido reduzindo-se o ruído em seu interior a um nível aceitável. A necessidade ou não dessa redução é determinada estabelecendo-se valores de referência e o atendimento a esses valores proporciona ao ambiente um isolamento sonoro adequado para a atividade ali desenvolvida. Esse conforto pode ser alcançado por meio do isolamento acústico adequado do sistema de fechamento externo, que evita ruídos aéreos vindos do exterior, do isolamento acústico adequado entre ambientes e de ruídos causados por impacto e equipamentos.

Segundo o Instituto de Pesquisas Tecnológicas do Estado de São Paulo – IPT (1998) e Hassan (2009), a transmissão de ruídos pode ocorrer tanto pela passagem direta na parede ou painel, quanto pela passagem indireta via flanqueamento (pilares, lajes e/ou paredes confluentes e via aérea), ou pode ocorrer por meio de elementos ou componentes que integram a parede ou painel, tais como janelas, aberturas, portas, dutos, eletrodutos, tubos, entreforros e entrepisos.

Alguns parâmetros são recomendados para se ter a avaliação do desempenho acústico de uma edificação e existem métodos padronizados para a medição desses parâmetros, seja em campo (edifícios já construídos), seja em laboratório (edifícios em fase de projeto). A norma brasileira NBR 15575 (ABNT, 2013) segue alguns procedimentos de ensaio e análise desses parâmetros, que são recomendados pela série de normas internacionais ISO 140 (partes 1 a 14)². Sendo assim, a notação utilizada pelas normas ISO é mantida nesse texto, com seus respectivos significados, exceto o índice de redução sonora ou *sound reduction index* (*R*), aqui chamado de perda na transmissão sonora ou *transmission loss* (*PT*) (Anexo A).

-

² Algumas normas da série ISO 140 que tratam de acústica em elementos construtivos foram substituídas pela série de normas ISO 10140 (ISO, 2010).

3.4. Desempenho acústico segundo a norma NBR 15575 (ABNT, 2013)

Conforme a norma NBR 15575 (ABNT, 2013), a edificação deve apresentar isolamento acústico adequado dos fechamentos externos, no que se refere aos ruídos aéreos vindos do exterior da edificação, e isolamento acústico adequado entre áreas comuns e privativas e entre áreas privativas de unidades autônomas distintas. O nível de desempenho acústico deve ser compatível com o nível de ruído do local de implantação da construção, observando os limites de estímulos sonoros externos ou os níveis de critérios de avaliação (*NCA*), especificados na norma NBR 10151 (ABNT, 2000a; Tabela 3.8). Deve ainda atender aos limites especificados pela norma NBR 10152 (ABNT, 2000b), quanto aos níveis de ruído compatíveis com o conforto acústico em seus ambientes internos (Tabela 3.9). O sistema de fechamento deve proporcionar isolamento acústico apropriado em relação aos ruídos aéreos externos, por impactos e entre ambientes.

Tabela 3.8. Níveis de critérios de avaliação (NCA) para ambientes externos, em dB(A)³

Tipos de áreas	Diurno	Noturno
Áreas de sítios e fazendas	40	35
Área estritamente residencial urbana ou de hospitais ou de escolas	50	45
Área mista, predominantemente residencial	55	50
Área mista, com vocação comercial e administrativa	60	55
Área mista, com vocação recreacional	65	55
Área predominantemente industrial	70	60

Fonte: NBR 10151 (ABNT, 2000a)

Tabela 3.9. Níveis de ruído para conforto acústico em alguns ambientes internos, em dB(A)

Locais	dB(A)
Escolas	
Bibliotecas, salas de música, salas de desenho	35 – 45
Circulação	45 – 55
Salas de aula, laboratórios	40 – 50
Salas de computadores	45 – 65
Residências	
Dormitórios	35 – 45
Salas de estar	40 – 50
Auditórios	
Salas de concertos, teatros	30 – 40
Salas de conferência, cinemas, salas de uso múltiplo	35 – 45

Fonte: NBR 10152 (ABNT, 2000b)

³ dB(A) corresponde a medida da intensidade do som com um filtro "A" de contorno.

Quanto à isolação acústica entre ambientes, os sistemas de pisos, fechamentos verticais e coberturas da edificação devem atender aos requisitos apresentados na norma NBR 15575 (ABNT, 2013). Os sistemas, seus materiais, componentes e elementos, devem proporcionar isolamento acústico entre unidades distintas e entre recintos de uma mesma unidade, quando destinadas ao repouso noturno, ao lazer doméstico e ao trabalho intelectual, assegurando conforto acústico, em termos de níveis de ruído de fundo transmitido via aérea e estrutural, e privacidade acústica, em termos de não inteligibilidade da fala.

Os ruídos contínuos e variáveis, causados por impacto e vibrações de equipamentos, também devem atender aos requisitos e critérios dessa norma. A verificação do desempenho acústico de sistemas construtivos (piso, fechamentos e coberturas), feita por meio de medições, pode ser realizada em campo ou em laboratório, aplicando-se o método de precisão, o método da engenharia e o método simplificado. As medições devem ser executadas com portas e janelas fechadas.

O método de precisão, realizado em laboratório, conforme a norma ISO 10140-2 (ISO, 2010), determina a isolação sonora de elementos construtivos, podendo-se aplicar seu resultado a diferentes projetos. Para avaliar um elemento, é necessário ensaiar cada componente e depois calcular o isolamento global do conjunto.

O método de engenharia, realizado em campo, para fachadas, conforme a norma ISO 140-5 (ISO, 1998), determina de forma rigorosa o isolamento sonoro global do fechamento externo (conjunto fachada e cobertura, no caso de casas térreas, e somente fachada nos edifícios multipiso), caracterizando de forma direta o comportamento acústico do sistema. Para paredes internas, esse método determina também de forma rigorosa o isolamento sonoro global entre unidades autônomas e entre uma unidade e áreas comuns, caracterizando de forma direta o comportamento acústico do sistema.

O método simplificado, realizado em campo, conforme a norma ISO 10052 (ISO, 2004), determina e permite obter uma estimativa do isolamento sonoro global do fechamento externo (conjunto fachada e cobertura, no caso de casas térreas, e somente fachada nos edifícios multipiso), em situações onde não se dispõe de instrumentação para medir o tempo de reverberação, ou quando as condições de ruído de fundo não permitem obter esse parâmetro.

3.4.1. Avaliação do desempenho acústico de piso interno

Para a avaliação do desempenho acústico de piso no interior de uma edificação, são considerados importantes o isolamento de ruído de impacto no piso (caminhamento, queda de objetos e outros) e o isolamento de ruído aéreo (conversas, som proveniente de TV e outros). Os níveis de ruído de fundo para o conforto acústico são determinados a partir do uso a que se destina a dependência da edificação, em função de ações externas regulares e normais. Em um projeto para isolamento acústico de um piso, são consideradas suas propriedades acústicas, de modo a assegurar conforto em relação aos níveis de ruídos de fundo transmitidos via aérea e estrutural, bem como privacidade acústica assegurando a inteligibilidade da comunicação verbal em ambientes adjacentes.

Para atenuar a passagem de som resultante de ruídos de impacto entre unidades habitacionais autônomas em pavimentos distintos, o elemento considerado (laje ou outro elemento portante, com ou sem contrapiso, sem tratamento acústico) deve apresentar o nível de pressão sonora de impacto padronizado ponderado, $L'_{nT,w}$ (Anexo A), máximo de 80 dB.

Esse valor limite para $L'_{nT,w}$ adotado pela norma brasileira NBR 15575 (ABNT, 2013) mostrase elevado quando comparado aos padrões de países europeus, citando-se a Espanha que adota valor máximo de $L'_{nT,w}$ de 65 dB, o Reino Unido adota o valor de 62 dB, a França e a Bélgica adotam 58 dB e a Áustria é o país mais restritivo com 48 dB (CORNACCHIA, 2009).

O nível de pressão sonora de impacto padronizado ponderado, $L'_{nT,w}$, deve ser avaliado para os dormitórios da unidade habitacional, pelo método de engenharia ou pelo método simplificado.

O isolamento de ruído aéreo dos pisos entre unidades habitacionais é feito para atenuar a passagem do som aéreo resultante de ruídos de uso normal (fala, TV, música, impactos, caminhamento, queda de objetos e outros). Esse isolamento sonoro entre ambientes, com portas e janelas fechadas, deve atender à diferença padronizada de nível ponderada, $D_{nT,w}$ (Anexo A), para ensaios de campo, conforme indicado a seguir.

• piso separando unidades habitacionais autônomas, sendo pelo menos um dos ambientes um dormitório; e piso separando unidades habitacionais autônomas de áreas comuns de uso coletivo: $D_{nT,w}$ deve ser no mínimo igual a 45 dB;

• piso separando unidades habitacionais autônomas, onde não há ambiente dormitório; e piso de unidade habitacional, posicionado sobre áreas comuns de trânsito eventual, como corredores e escadas: $D_{nT,w}$ deve ser no mínimo igual a 40 dB.

3.4.2. Avaliação do desempenho acústico de sistemas de fechamento externos e internos

Para verificação do desempenho acústico de sistemas de fechamento externos e internos, os ambientes da edificação devem atender à norma NBR 10152 (ABNT, 2000b), de forma que a diferença padronizada de nível ponderada a 2 m, $D_{2m,nT,w}$ (Anexo A) de fechamentos externos de dormitórios, em habitações localizadas em áreas sujeitas a situações de ruído amenas, deve ser no mínimo igual a 25 dB. Para fechamento externo de cozinhas, lavanderias e banheiros, não há exigências específicas.

Tomando-se como critério a diferença padronizada de nível ponderada ($D_{nT,w}$) entre ambientes, para ensaio de campo (fechamentos verticais internos), o sistema de fechamento vertical interno deve apresentar esse parâmetro conforme mostrado na Tabela 3.10. Tomando-se como critério o índice de redução sonora ponderado (PT_w) entre ambientes pelo ensaio de laboratório, recomenda-se que a isolação entre ambientes apresente esse índice conforme apresentado na Tabela 3.11.

Tabela 3.10. Valores mínimos recomendados de $D_{nT,w}$ dos componentes construtivos, para ensaio de campo

Elemento	$D_{nT,w}(\mathrm{dB})$
Parede entre unidades habitacionais autônomas (parede de geminação), onde não há dormitório; parede cega de dormitórios entre uma unidade habitacional e áreas comuns de trânsito eventual (corredores e escadas); e conjunto de paredes e portas de unidades distintas separadas pelo <i>hall</i>	≥ 40
Parede entre unidades habitacionais autônomas (parede de geminação), onde há pelo menos um dormitório; e parede cega entre uma unidade habitacional e áreas comuns de permanência de pessoas	≥ 45
Parede cega de salas e cozinhas entre uma unidade habitacional e áreas comuns de trânsito eventual, como corredores e escadas	≥ 30

Fonte: NBR 15575 (ABNT, 2013)

Tabela 3.11. Valores mínimos recomendados de PT_w dos componentes construtivos, para ensaio de laboratório

Elemento	$PT_{w}(dB)$
Parede entre unidades habitacionais autônomas (parede de geminação), onde não há dormitório; parede cega de dormitórios entre uma unidade habitacional e áreas comuns de trânsito eventual (corredores e escadas); e conjunto de paredes e portas de unidades distintas separadas pelo <i>hall</i>	45 – 49
Parede entre unidades habitacionais autônomas (parede de geminação), onde há pelo menos um dormitório; e parede cega entre uma unidade habitacional e áreas comuns de permanência de pessoas	50 – 54
Parede cega de salas e cozinhas entre uma unidade habitacional e áreas comuns de trânsito eventual, como corredores e escadas	35 – 39

Fonte: NBR 15575 (ABNT, 2013)

3.4.3. Avaliação do desempenho acústico de sistemas de cobertura

A isolação acústica de cobertura para sons aéreos, vindos de fontes de emissão externa, visa proporcionar condições para que haja repouso noturno nos dormitórios, atividades intelectuais, descanso e lazer doméstico nas salas de estar. O ruído de impacto de chuva não é considerado.

Para a avaliação do isolamento acústico da cobertura devido a sons aéreos de fontes de emissão externas, devem ser avaliados os dormitórios da unidade habitacional e determinados, por um dos métodos de campo, os valores da diferença padronizada de nível ponderada $(D_{2m,nT,w})$. As medições devem ser executadas com portas e janelas fechadas, e o valor mínimo de $D_{2m,nT,w}$ do fechamento externo de dormitório, para uma edificação localizada em áreas sujeitas a situações de ruído amenas, deve ser igual a no mínimo 25 dB. No caso de habitação localizada junto a vias de tráfego intenso o valor mínimo de $D_{2m,nT,w}$ deve ser igual a no mínimo 30 dB.

Para a avaliação do isolamento acústico devido a ruído de impacto em coberturas acessíveis de uso coletivo, esses elementos devem apresentar nível de pressão sonora de impacto padronizado ponderado ($L'_{nT,w}$), para ensaios de campo, no máximo de 55 dB.

4. PAINÉIS DE FECHAMENTO INDUSTRIALIZADOS

Com o desenvolvimento da construção estruturada em aço, novos elementos construtivos de fechamento, mais leves, têm sido introduzidos no mercado nacional e no cotidiano das obras. Esses sistemas de fechamento pré-fabricados, além de representarem uma das inovações de maior peso nas construções por determinarem a configuração geral da obra, apresentam vantagens, tais como alta eficiência construtiva, redução do tempo de construção, redução no volume de desperdícios e diversas possibilidades arquitetônicas.

No mercado brasileiro encontram-se diversos tipos de painéis industrializados, observando-se, entretanto, que ainda há uma carência de conhecimento tecnológico das características de desempenho térmico e acústico desses sistemas de fechamento por parte de projetistas, sendo sua eficiência questionada por profissionais e usuários.

Para que a escolha dos fechamentos de uma edificação represente uma solução eficiente é necessário que se leve em conta tanto os detalhes construtivos, quanto suas capacidades de desempenho no que diz respeito ao conforto ambiental.

Nesse capítulo, são apresentados alguns sistemas de fechamento verticais industrializados aplicados em edificações estruturadas em aço no Brasil, que são os painéis formados por placa cimentícia, gesso acartonado, pré-moldado de concreto maciço, concreto celular autoclavado e poliestireno expandido. Apresenta-se ainda o sistema de fechamento constituído por alvenaria convencional de tijolo cerâmico. Na avaliação do desempenho térmico e acústico são estudados esses painéis e combinações deles, formando painéis em multicamadas, sem e com material isolante entre eles.

4.1. Painéis de placa cimentícia (PLC)

As placas cimentícias são compostas por uma mistura de cimento *Portland*, fios sintéticos, fibras de celulose sem amianto e agregados. São utilizadas tanto para fechamentos externos quanto internos e, como não recebem acabamento em fábrica, devem receber acabamento como pintura ou revestimentos aplicados diretamente sobre os painéis montados (Figura 4.1). Possuem grande resistência a impactos e a umidade, baixo peso e rapidez de execução, além de serem incombustíveis. As dimensões dos painéis são, geralmente, 1,20 m de largura,

comprimentos de 2,00; 2,40 e 3,00 m e espessuras de 6; 8; 10 e 12 mm. A espessura dos painéis é determinada conforme sua aplicação (Tabela 4.1).

Figura 4.1 – Montagem de fechamento vertical em placa cimentícia Fonte: SALES, 2001

A fixação das placas é feita utilizando-se uma estrutura auxiliar composta de guias e montantes em madeira ou aço, com tratamento superficial em alumínio ou zinco, sendo esse último o mais utilizado. A estrutura auxiliar recebe os esforços do peso próprio e do vento e os transmite às lajes, vigas e pilares. Esse sistema de fechamento, composto pela estrutura auxiliar e pelas placas cimentícias, deve ser tratado de forma independente da estrutura para que haja movimentação relativa entre a estrutura e o fechamento. As placas são fixadas primeiramente nas guias da estrutura auxiliar já aparafusada na laje e na viga de borda. Em seguida é feita a colocação dos montantes, aos quais as placas são aparafusadas (GOMES 2007; ARAÚJO; SOUZA; COSTA, 2009).

Sem normas específicas que controlem a qualidade de fabricação das placas cimentícias, as peças estão sujeitas a patologias tais como trincas no corpo da chapa e nas juntas. Esse tipo de fechamento é muito aplicado em edificações construídas com o sistema *Light Steel Framing* (CRASTO, 2005; GOMES, 2007; SANTIAGO, 2008).

Tabela 4.1. Relação entre espessuras das placas cimentícias e sua aplicação

Dimensões			Peso da		
Espessura (mm)	Comprimento (m)	Largura (m)	placa (kg) ⁴	Aplicações ideais	
4	2,00	1,20	16,3	Pequenos arremates internos	
	2,40	1,20	19,6		
	3,00	1,20	24,5		
6	2,00	1,20	24,4	Divisórias leves, forros e dutos de ar condicionado	
	2,40	1,20	29,4		
	3,00	1,20	36,7		
8	2,00	1,20	32,6	Fechamentos internos	
	2,40	1,20	39,2		
	3,00	1,20	49,0		
10	2,00	1,20	40,8	Fechamentos externos em geral e recomendada para o sistema light steel framing	
	2,40	1,20	49,0		
	3,00	1,20	61,2		
12	2,00	1,20	48,9	Fechamentos que necessitem de maior espessura por questões específicas	
	2,40	1,20	58,8		
	3,00	1,20	73,5		

Fonte: BRASILIT, 2006 apud GOMES, 2007

4.2. Painéis de gesso acartonado (GEA)

As placas de gesso acartonado são fabricadas industrialmente por meio de laminação contínua de uma mistura de gesso, água e aditivos entre duas lâminas de papelão. Essa configuração confere aos painéis resistência à compressão, proporcionada pelo gesso, e resistência à tração, proporcionada pelo papelão, que trabalham de maneira análoga ao concreto armado. As placas possuem, em geral, dimensões nominais de 1,20 m de largura, de 1,80 m a 3,60 m de comprimento e espessuras de 9,5; 12,5 e 15,0 mm. O fechamento constituído por gesso acartonado deve ser utilizado apenas em áreas protegidas das intempéries.

No mercado nacional, são disponibilizados, basicamente, três tipos de placas de gesso acartonado: as placas padrão ou *standart* (ST) para paredes sem exigência específica, as placas hidrófugas ou resistentes à umidade (RU) para paredes empregadas em ambientes sujeitos à umidade (banheiros, cozinhas e áreas de serviço) e as placas resistentes ao fogo (RF) para paredes com exigências especiais de resistência ao fogo (MITIDIERI, 1997 apud VON KRÜGER, 2000).

-

⁴ Unidade de força.

Para a montagem dos painéis do sistema de fechamento constituído por placas de gesso acartonado são utilizados montantes e guias de aço ou madeira que são fixadas também com parafusos comuns. Após a colocação das placas, essas peças ficam embutidas nas paredes. Na montagem da divisória podem ser utilizadas estruturas constituídas por perfis U e U enrijecido (Ue) de aço galvanizado de dimensões menores, formando-se assim o chamado sistema *Drywall*. No entanto, os painéis são leves e não podem receber função estrutural.

Por se tratar de um sistema industrializado, os painéis não permitem improvisos durante a obra, sendo que os mesmos devem ser montados após a elaboração de todos os projetos e subprojetos. Por ser constituído de paredes ocas, esse sistema de fechamento apresenta a possibilidade de alojamento de dutos em seu interior. As instalações hidráulicas, elétricas e outras devem ser previstas, deixando-se uma prévia abertura de passagens tanto nos painéis quanto nos montantes.

Também devem ser previstos reforços para a fixação de estantes, tanques, bancadas e outros, de acordo com o projeto. Os painéis são colocados após a instalação dos dutos de energia, telefonia, água e esgoto, que são instalados onde foram projetados e compatibilizados entre si, proporcionando testes de instalação que identificam possíveis reparos após a instalação dos painéis, permitindo acabamento posterior (VON KRÜGER, 2000; Figura 4.2).

Dentre as vantagens de utilização dos painéis de gesso acartonado destacam-se: grande capacidade de absorção de deformações, diminuindo a ocorrência de trincas, esmagamento de paredes e destacamento de revestimentos; menor massa e consequentemente menor peso próprio dos fechamentos; mesma resistência a impacto que as alvenarias convencionais; fácil acesso às instalações hidráulicas e elétricas sem necessidade de rasgos; boa qualidade superficial que permite aplicação direta de acabamento; redução de perda de material; rapidez de execução e flexibilidade arquitetônica. Além disso, os painéis de gesso acartonado podem receber revestimentos tais como cerâmica, pintura e textura, em paredes internas, e pastilhas, pedra, reboco e pintura em paredes externas. Também, variações do sistema permitem fechamento de grandes vãos e a colocação de lã de vidro entre as placas permite paredes com desempenho acústico melhor do que paredes sem esse material em termos de perda na transmissão sonora (VON KRÜGER, 2000; SALES, 2001; CEOTTO, 2005; RIBAS; SOUZA, 2011).

Figura 4.2 – Montagem do sistema de fechamento vertical em gesso acartonado Fonte: SALES, 2001

Além dos parafusos para fixação das chapas de gesso acartonado à estrutura, outros acessórios são encontrados: fita de papel reforçado para ser empregada nas juntas entre chapas ou em reforços ou acabamento de cantos, cantoneiras metálicas para acabamento e proteção das chapas nos cantos de paredes e bordas cortadas, bem como massa especial para rejuntamento a base de gesso e aditivos, inclusive resinas, para proporcionar mais trabalhabilidade e plasticidade (VON KRÜGER, 2000).

Esse tipo de fechamento também é muito aplicado em edificações construídas com o sistema *Light Steel Framing*, como fechamento vertical da face interna dos painéis externos da edificação e como fechamento interno (CRASTO, 2005; GOMES, 2007; SANTIAGO, 2008).

4.3. Painéis de pré-moldado de concreto (PMC)

Os painéis de pré-moldado de concreto são compostos basicamente por concreto armado e produzidos a partir de formas metálicas, sem limites dimensionais, o que permite inúmeras variações em sua forma e acabamento, sendo comum a aplicação de painéis que possuem como comprimento a dimensão do vão existente entre os pilares.

Durante a fabricação, a superfície externa dos painéis fica em contato com o fundo da forma, o que garante qualidade de acabamento do concreto aparente. Além disso, os painéis podem

receber outros tipos de acabamento prévio, tais como alto relevo, revestimento com cerâmica, pastilhas, texturas pigmentadas, e ainda terem a pré-fixação de esquadrias. As peças têm peso elevado e sua instalação em fachadas depende de içamento por gruas ou guindastes (LOPES, 1989; VON KRÜGER, 2000; Figura 4.3).

Figura 4.3 – Colocação de painéis de pré-moldado de concreto em fachada Fonte: SALES, 2001

A fixação dos painéis à estrutura pode ser feita de várias formas, aplicando-se barras de fixação, *inserts* (pinos ou parafusos) e/ou argamassa. Eles podem ser fixados na laje e nas vigas de borda ou diretamente nos pilares. No primeiro caso a base inferior suporta o peso do painel e ele fica sujeito à compressão. A carga de vento e as decorrentes da deformação higrotérmica são absorvidas pela fixação da parte superior, feita com cantoneiras fixadas à viga de borda, que permite movimentação no plano horizontal. No segundo caso, o pilar recebe uma cantoneira contínua soldada a ele, que apoia o painel fixado com argamassa colante ou parafusos. Essa fixação transmite as cargas devidas ao peso do painel e ao vento diretamente para os pilares que as transferem para a fundação. A movimentação relativa entre estrutura, painel e higrotérmica deve ser prevista, sendo necessárias juntas para desvincular o painel da estrutura suporte da edificação (ARAÚJO; SOUZA; COSTA, 2009).

Os painéis de pré-moldado de concreto podem ser divididos em três tipos básicos: painéis cortina, painéis de fechamento e painéis portantes. Os dois primeiros são painéis fixados à estrutura e nas lajes da edificação e diferem entre si apenas pelo fato da estrutura ficar aparente no caso dos painéis de fechamento. Já o terceiro tipo refere-se a painéis que suportam, além de seu peso, as cargas de laje e painéis superiores, sem necessidade de estrutura auxiliar (LOPES, 1989).

Além dessas variações, há dois grandes grupos de painéis de pré-moldado de concreto: os painéis de concreto maciço e os painéis de concreto com alma em poliestireno (VON KRÜGER, 2000; SALES, 2001).

Os painéis de concreto maciço são constituídos inteiramente por concreto e uma armação metálica interna, conforme dimensões e uso determinados em projeto. Encontram-se no mercado painéis de comprimentos e alturas variadas, sendo que espessuras estão entre 75 e 240 mm (Figura 4.4 (a)).

Os painéis de concreto com alma em poliestireno são constituídos por uma camada intermediária de poliestireno, que varia de espessura, e duas camadas de concreto, ligadas ao recheio de poliestireno por armadura metálica (Figura 4.4 (b)).

Figura 4.4 – Painel de pré-moldado de concreto maciço (a); painel de pré-moldado de concreto com alma em poliestireno (b)

Fonte: SALES, 2001

A norma brasileira que trata do projeto e execução de estruturas de concreto pré-moldado é a NBR 9062 (ABNT, 2006). Essa norma estabelece os requisitos para o projeto, execução e controle de estruturas pré-moldadas de concreto armado ou protendido, excluídas aquelas em que se empreguem concreto leve ou outros especiais.

4.4. Painéis de concreto celular autoclavado (CCA)

O concreto celular autoclavado (CCA) é constituído por um concreto leve fabricado por processo industrial, misturando-se materiais calcáreis (cimento, cal ou ambos) e materiais ricos em sílica, ambos granulados finamente. A mistura é expandida com produtos formadores de gases ou agente espumante, água e aditivos para casos específicos, sendo submetidos à pressão e temperatura por meio de vapor saturado. O CCA contém células fechadas, aeradas uniformemente.

São fabricados em CCA blocos e painéis que podem ser utilizados em sistemas de fechamento internos e externos. Os blocos são aplicados em sistemas de fechamento vertical e os painéis são aplicados em sistemas de fechamento vertical e horizontal. Os painéis mais comumente utilizados em construções industrializadas possuem comprimento de 1,5 m e de 2,0 a 3,0 m, com subdivisões a cada 10 cm, largura de 30 e 55 cm e espessura de 10,0; 12,5; 15,0; 17,5 e 20,0 cm. Sua fixação à estrutura é feita por argamassa flexível apropriada, conectores, cantoneiras ou chapas dobradas conforme projeto de detalhamento (Figura 4.5).

Figura 4.5 – Montagem de fechamento horizontal em painéis de concreto celular autoclavado Fonte: SALES, 2001

Além de leves, os painéis de CCA são resistentes, podem ser facilmente serrados, furados e escarificados para passagem de tubulações e apresentam resistência ao fogo. Algumas normas brasileiras regulamentam a fabricação dos blocos de concreto celular autoclavado. São elas: NBR 13438 (ABNT, 1995a), NBR 13439 (ABNT, 1995b), NBR 13440 (ABNT, 1995c) e NBR 14956 (ABNT, 2003).

4.5. Painéis de poliestireno expandido (EPS)

Os painéis de poliestireno expandido (EPS) são formados por um núcleo composto de placa ondulada de poliestireno expandido com espessura que varia de 55 a 100 mm, entre duas malhas de tela de aço soldadas, e revestido com argamassa projetada de aproximadamente 25 mm de espessura em ambas as faces, que pode ser empregado em paredes divisórias, paredes resistentes e lajes. Esse tipo de painel é bastante leve, pode ser transportado manualmente com facilidade por um operário. Além disso, sua constituição permite que o conjunto parede/laje trabalhe como um todo, formando uma estrutura monolítica autoportante, que resiste até a abalos sísmicos (MAMMINI, 1998).

O EPS é um produto inerte, inofensivo ao meio ambiente e reciclável. Os painéis utilizados na construção civil garantem economia de corte, mão de obra, equipamentos e tempo de execução, além de resistência ao fogo. O corte ondulado do poliestireno permite obter recobrimento adequado de argamassa que proporciona capacidade estrutural maximizada do produto. O painel de fechamento simples possui largura de 1,125 ou 1,200 m, conforme fabricante, e comprimento variável, normalmente igual ao pé direito ou à distância entre vigas. O painel duplo é composto por dois painéis simples unidos por conectores de aço, com um espaço livre entre eles. Quando se preenche esse espaço com betão e havendo uma malha de aço de alta resistência em ambos os lados, tem-se um fechamento de elevada capacidade resistente e bom isolante térmico (MAMMINI, 1998; SALES, 2001).

Por se tratar de um sistema monolítico, não há necessidade de juntas de dilatação, sendo que as juntas entre os painéis e a estrutura metálica são feitas utilizando-se ferro-cabelo soldado à estrutura. Caso a estrutura não seja aparente, coloca-se uma tela de recobrimento e procede-se à projeção da argamassa (VON KRÜGER, 2000; Figura 4.6).

Na montagem do sistema de fechamento, os painéis de EPS são encaixados, amarrados às armaduras e ajustados entre si por meio do encaixe da própria estrutura. Após a colocação das placas de uma parede sobre uma base alinhada e aprumada, coloca-se nas junções uma tela de reforço para propiciar rigidez e assegurar continuidade ao isolamento térmico e acústico. Os painéis são fabricados com as aberturas de portas e janelas previstas no projeto. A instalação de tubulações para as redes hidráulicas e elétricas são facilitadas, pois não há quebra de parede, sendo utilizado um soprador de ar quente, que queima o poliestireno expandido e abre canaletas por onde são passadas as tubulações (MAMMINI, 1998).

Figura 4.6 – Painel de poliestireno expandido (EPS) Fonte: MAMMINI, 1998

As normas brasileiras que regulamentam a fabricação dos painéis em EPS são: NBR 10411 (ABNT, 1988), NBR 12094 (ABNT, 1991), NBR 8082 (ABNT, 1992a), NBR 7973 (ABNT, 2007a), NBR 11752 (ABNT, 2007b), NBR 11948 (ABNT, 2007c) e NBR 11949 (ABNT, 2007d).

4.6. Alvenaria de tijolo cerâmico

Vê-se com frequência a aplicação de sistemas de fechamentos convencionais em alvenaria em edificações estruturadas em aço. Esse procedimento possui caráter contraditório caracterizando uma semi-industrialização da construção. Isso porque o sistema convencional moldado *in loco*, que pode gerar desperdício de material, tempo e mão de obra, e o sistema industrializado, que garante racionalização e rapidez na montagem bem como canteiros de obra limpos e menores, possuem tempos de execução diferentes. Além disso, a compatibilização das interfaces construtivas, de solução que exige técnicas adequadas, pode comprometer a qualidade final e o desempenho da edificação (HENRIQUES, 2005; RIBAS, 2006).

No entanto, o sistema de fechamento constituído por alvenaria de tijolo cerâmico é ainda bastante utilizado e difundido no país. Trata-se de uma opção de menor custo e maior facilidade de execução e por ser viável para qualquer tipo de obra e local, vem sendo empregado como fechamento interno ou externo, revestido ou não, e aceita qualquer tipo de acabamento (HENRIQUES, 2005; Figura 4.7).

Dentre os tijolos cerâmicos mais utilizados encontram-se os maciços comuns, furados, laminados aparentes e especiais. Os tijolos maciços comuns, furados e laminados aparentes são usados em alvenarias de fechamento. Os tijolos furados, largamente utilizados nas construções, possuem menor peso próprio que os maciços e melhor qualidade de isolamento térmico. Os laminados aparentes possuem um acabamento superficial melhor e são utilizados em alvenaria aparente sem acabamento em argamassa de reboco. Os tijolos especiais de cerâmica, com dimensões e formatos especiais, são peças vazadas, também conhecidas por cobogós, produzidas para funções bem específicas, tais como: redutores de peso em lajes mistas e especiais, para complementação de vãos entre viguetas, sendo também utilizados em fechamentos de modo a possibilitar ventilação e iluminação nos ambientes (Figura 4.8).

Figura 4.7 – Edificação em estrutura metálica e sistema de fechamento em alvenaria e vidro Fonte: RIBAS, 2006

Paredes em alvenaria de tijolo cerâmico podem ser classificadas, quanto à função, como alvenaria de fechamento, estrutural e de acabamento externo. No entanto, há alvenarias especiais usadas, por exemplo, em pisos e lajes pré-moldadas.

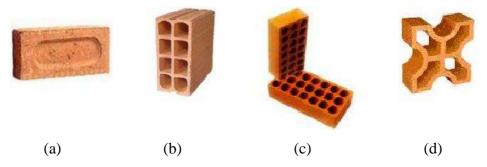


Figura 4.8 – Tijolos cerâmicos mais utilizados em alvenaria: maciço comum (a), furado (b), laminado aparente (c) e especial (d)

Em edificações de estruturas metálicas, bem como em edificações construídas sob o sistema *Light Steel Framing*, a alvenaria é aplicada como elemento de fechamento independente da estrutura, atuando como um invólucro vinculado a ela por meio de conectores metálicos. As cargas verticais da parede de alvenaria são transferidas diretamente para as fundações (FRANSOZO, 2003; GOMES, 2007; SANTIAGO, 2008).

A norma NBR 15270 (ABNT, 2005b) trata de componentes cerâmicos dos blocos para alvenaria de fechamento e estrutural. E a norma NBR 15812 (ABNT, 2010) trata de projetos, execução e controle de obras para alvenaria estrutural em blocos cerâmicos.

4.7. Propriedades e composição dos painéis avaliados

Os painéis avaliados foram escolhidos com base em levantamento feito no trabalho de Von Krüger (2000) e Sales (2001) seguindo as tendências do mercado da construção civil regional. Para as análises propostas, aplicam-se espessuras de painéis usuais em composições de paredes em multicamadas, contendo uma camada de ar, ou uma camada de ar e material fonoabsorvente, tendo-se optado pela lã de vidro, entre os painéis. As propriedades dos materiais dos painéis e da alvenaria de tijolo cerâmico, tais como o módulo de elasticidade (E), a massa específica (ρ) , o fator de amortecimento interno (η) e o coeficiente de Poisson (ν) , relevantes na análise acústica e térmica, são mostradas na Tabela 4.2. Os painéis duplos e a composição de suas respectivas camadas estão esquematizados na Figura 4.9, bem como a alvenaria de tijolo cerâmico revestido com argamassa nas duas faces, na Figura 4.10, aplicando-se as seguintes siglas: placa cimentícia: PLC, gesso acartonado: GEA, pré-moldado de concreto maciço: PMC, concreto celular autoclavado: CCA, poliestireno expandido: EPS, alvenaria de tijolo cerâmico: ATC, lã de vidro: LVI.

Tabela 4.2. Caracterização dos painéis avaliados

Painéis	$E (N/m^2)$	ρ (kg/m ³)	η	ν
Placa cimentícia	$1,20 \times 10^{8}$ (1)	1330 (1)	0,005	0,20
Gesso acartonado	$2,00 \times 10^{9}$ (2)	750 ⁽³⁾	0,006	0,20
Pré-moldado de concreto maciço	$2,30 \times 10^{10} {}^{(1)}$	2400 (3)	0,020	0,20
Concreto celular autoclavado	$1,35 \times 10^{9} ^{(1)}$	500 ⁽³⁾	0,015	0,15
Poliestireno expandido com	$2,50 \times 10^{6} ^{(2)}$	960 ⁽²⁾	0,005	0,08
argamassa projetada	2,50 X 10	(25-EPS; 2100-argam)		
Alvenaria de tijolo cerâmico	$1,62 \times 10^{10} {}^{(2)}$	1890 ⁽³⁾	0,005	0,15
revestida com argamassa	1,02 X 10	(1800-tijolo; 2100-argam)	0,003	

Fontes: (1) SALES, 2001; (2) BIES; HANSEN, 2003; (3) NBR 15220 (ABNT, 2005a)

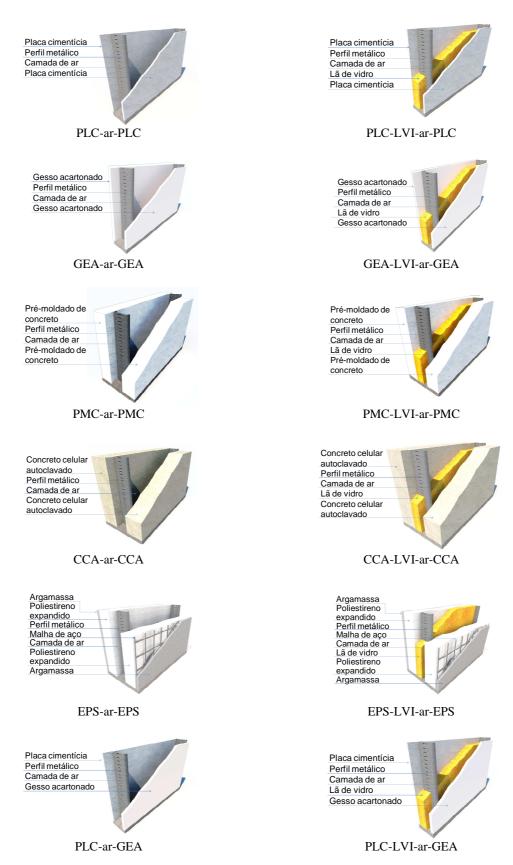


Figura 4.9 - Painéis duplos e suas respectivas camadas

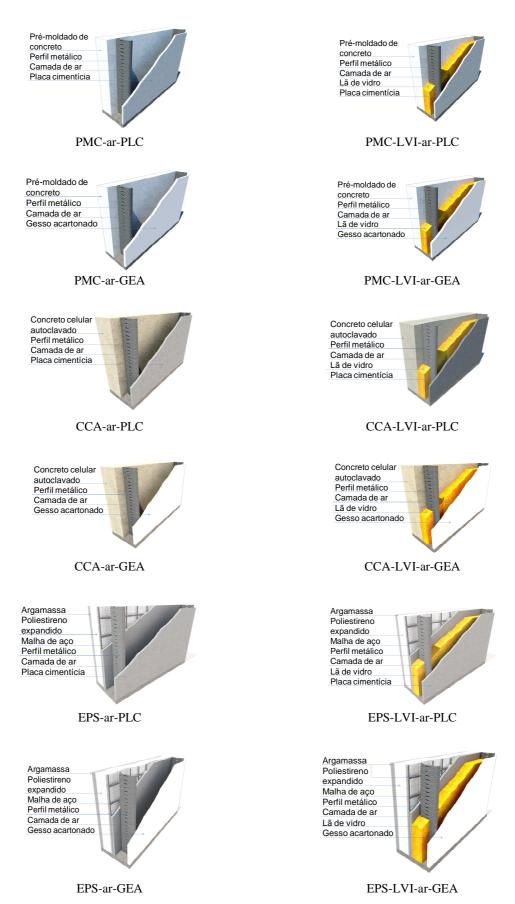


Figura 4.9 - Painéis duplos e suas respectivas camadas

ATC revestido com argamassa nas duas faces

Figura 4.10 – Alvenaria de tijolo cerâmico

O nome adotado, a espessura (h), a massa específica superficial (M), a rigidez à flexão (B_s) e a frequência crítica (f_c) dos painéis de fechamento simples analisados e da alvenaria de tijolo cerâmico são mostrados na Tabela 4.3.

Tabela 4.3. Nome, espessura (h), massa específica superficial (M), rigidez à flexão (B_s) e frequência crítica (f_c) dos painéis de fechamento simples e da alvenaria de tijolo cerâmico

Material	Nome	h (m)	$\frac{M}{(\text{kg/m}^2)}$	<i>B_S</i> (N.m)	f _c (Hz)
Placa	PLC(10)	0,010	13,30	10	21158
cimentícia	PLC(12)	0,012	15,96	18	17631
Cimenticia	PLC(100)	0,100	133,00	10417	2116
Cassa	GEA(12,5)	0,0125	9,38	339	3113
Gesso acartonado	GEA(15)	0,015	11,25	586	2595
acartonado	GEA(100)	0,100	75,00	173611	389
Pré-moldado de	PMC(75)	0,075	180,00	842285	274
	PMC(100)	0,100	240,00	1996528	205
concreto maciço	PMC(225)	0,225	540,00	22741699	91
Concreto celular	CCA(100)	0,100	50,00	115090	390
autoclavado	CCA(275)	0,275	137,50	2393502	142
Poliestireno expandido	EPS(100)	0,100	96,00	210	12670
com argam. projetada	EPS(275)	0,275	110,55	4361	2981
Alvenaria de tijolo cerâmico	ATC (150)	0,150	282,00	4661125	146

O nome adotado, a massa específica superficial dos dois painéis que compõem os fechamentos em multicamadas (M_1 e M_2), a distância entre os painéis ou a largura da cavidade (d), bem como as características acústicas dos fechamentos em multicamadas, que são a frequência crítica dos dois painéis (f_{c1} e f_{c2}), a menor frequência de ressonância do conjunto massa-ar-massa (f_0) e os fatores de amortecimento interno dos dois painéis (η_1 e η_2), encontram-se na Tabela 4.4.

A partir desse ponto, no texto, cada painel é referenciado pela sigla do material que o compõe seguido da espessura desse material entre parênteses, em mm.

Tabela 4.4. Nome, massa específica superficial dos painéis (M_1 e M_2), distância entre painéis ou largura da cavidade (d), frequência crítica dos painéis (f_{c1} e f_{c2}), menor frequência de ressonância do conjunto massa-ar-massa (f_0) e fatores de amortecimento interno dos painéis (η_1 e η_2)

Material do fechamento em	M_{I}	M_2	d	f_{cI}	f_{c2}	f_0	n.	η_2
multicamadas e espessura (mm)	(kg/m ²)	(kg/m ²)	(m)	(Hz)	(Hz)	(Hz)	η_I	·
PLC(10)-ar(75)-PLC(10)	13,30	13,30	0,075	21158	21158	114	0,005	0,005
PLC(10)-LVI(50)-ar(25)-PLC(10)	13,30	13,30	0,075	21158	21158	114	0,005	0,005
PLC(12)-ar(90)-PLC(12)	15,96	15,96	0,090	17631	17631	95	0,005	0,005
PLC(12)-LVI(50)-ar(40)-PLC(12)	15,96	15,96	0,090	17631	17631	95	0,005	0,005
GEA(12,5)-ar(75)-GEA(12,5)	9,38	9,38	0,075	3113	3113	136	0,006	0,006
GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	9,38	9,38	0,075	3113	3113	136	0,006	0,006
GEA(15)-ar(90)-GEA(15)	11,25	11,25	0,090	2595	2595	113	0,006	0,006
GEA(15)-LVI(50)-ar(40)-GEA(15)	11,25	11,25	0,090	2595	2595	113	0,006	0,006
PMC(75)-ar(75)-PMC(75)	180,00	180,00	0,075	274	274	31	0,020	0,020
PMC(75)-LVI(50)-ar(25)-PMC(75)	180,00	180,00	0,075	274	274	31	0,020	0,020
CCA(100)-ar(75)-CCA(100)	50,00	50,00	0,075	390	390	59	0,015	0,015
CCA(100)-LVI(50)-ar(25)-CCA(100)	50,00	50,00	0,075	390	390	59	0,015	0,015
EPS(100)-ar(75)-EPS(100)	96,00	96,00	0,075	12670	12670	42	0,005	0,005
EPS(100)-LVI(50)-ar(25)-EPS(100)	96,00	96,00	0,075	12670	12670	42	0,005	0,005
PLC(10)-ar(75)-GEA(12,5)	9,38	13,30	0,075	3113	21158	125	0,006	0,005
PLC(10)-LVI(50)-ar(25)-GEA(12,5)	9,38	13,30	0,075	3113	21158	125	0,006	0,005
PLC(12)-ar(90)-GEA(15)	11,25	15,96	0,090	2595	17631	105	0,006	0,005
PLC(12)-LVI(50)-ar(40)-GEA(15)	11,25	15,96	0,090	2595	17631	105	0,006	0,005
PMC(75)-ar(75)-PLC(10)	180,00	13,30	0,075	274	21158	84	0,020	0,005
PMC(75)-LVI(50)-ar(25)-PLC(10)	180,00	13,30	0,075	274	21158	84	0,020	0,005
PMC(75)-ar(75)-GEA(12,5)	180,00	9,38	0,075	274	3113	99	0,020	0,006
PMC(75)-LVI(50)-ar(25)-GEA(12,5)	180,00	9,38	0,075	274	3113	99	0,020	0,006
CCA(100)-ar(75)-PLC(10)	50,00	13,30	0,075	390	21158	91	0,015	0,005
CCA(100)-LVI(50)-ar(25)-PLC(10)	50,00	13,30	0,075	390	21158	91	0,015	0,005
CCA(100)-ar(75)-GEA(12,5)	50,00	9,38	0,075	390	3113	105	0,015	0,006
CCA(100)-LVI(50)-ar(25)-GEA(12,5)	50,00	9,38	0,075	390	3113	105	0,015	0,006
EPS(100)-ar(75)-PLC(10)	96,00	13,30	0,075	12670	21158	86	0,005	0,005
EPS(100)-LVI(50)-ar(25)-PLC(10)	96,00	13,30	0,075	12670	21158	86	0,005	0,005
EPS(100)-ar(75)-GEA(12,5)	9,38	96,00	0,075	3113	12670	101	0,006	0,005
EPS(100)-LVI(50)-ar(25)-GEA(12,5)	9,38	96,00	0,075	3113	12670	101	0,006	0,005

5. APLICAÇÃO DA METODOLOGIA PROPOSTA

Encontrar materiais que apresentem soluções integradas de comportamento térmico e acústico é um estudo que envolve um grande número de variáveis térmicas e acústicas e, para isso, a abordagem via simulação numérica constitui ferramenta adequada e eficiente.

Nesse trabalho, a avaliação térmica é feita determinando-se a temperatura e umidade do ar interno de edificações modelo, por meio do programa computacional ESP-r (Energy Simulation Program — research). Para o estudo do comportamento acústico, calcula-se o tempo de reverberação dentro dos recintos das edificações, sendo esse fenômeno associado aos resultados obtidos na simulação térmica, aplicando-se os métodos de Sabine, Millington, Eyring e Arau-Puchades, apresentados no Capítulo 2, ou o módulo acústico do ESP-r. A análise acústica ainda é realizada por meio do método gráfico apresentado também no Capítulo 2, estimando-se a perda na transmissão sonora que ocorre através dos fechamentos propostos.

Aplicando essa metodologia é possível interligar as análises térmica e acústica e os resultados irão permitir avaliar os sistemas de fechamento para uma escolha adequada em uma determinada situação.

5.1. O software ESP-r

O ESP-r foi desenvolvido a partir de 1974, por Joe Clarke, na Escócia, e está em constante evolução no que diz respeito a extensões técnicas e melhoria de sua interface com o usuário. Atualmente é distribuído e desenvolvido pela *University of Strathclyde Engineering*, do Reino Unido. O sistema operacional usado é o Unix, com implementações possíveis para Solaris, Linux (SuSE, Ubuntu e outros), OSX e Windows (ambiente Cygwin, XP, Vista). Esse *software* é adotado por ser reconhecido pela comunidade científica, suportar qualquer modelo de projeto de arquitetura, possuir acesso livre e por sua flexibilidade e estrutura modular facilitarem a implementação computacional (CITHERLET; HAND, 2002; Apêndice A).

O programa aplica modelos matemáticos solucionados pelos métodos de elementos finitos e de diferenças finitas para promover a simulação do comportamento térmico dos ambientes. Tais modelos consideram o efeito do armazenamento térmico nos elementos de fechamento e as trocas de calor por radiação, condução e convecção, que ocorrem no interior da edificação, o que permite avaliar os gradientes de temperatura e a distribuição de fluxos de ar com bom grau de refinamento (CLARKE et al., 1993).

A simulação térmica deve ser feita antes da acústica, pois essa última é realizada a partir dos valores de temperatura e umidade encontrados, que contribuem para o cálculo da absorção sonora. Essa absorção sonora recebe uma parcela de contribuição do ar presente no ambiente considerado, que é aplicada na determinação do tempo de reverberação para a avaliação acústica (CITHERLET, 2001; Apêndice A).

Para as simulações, o primeiro passo é criar modelos geométricos das edificações em três dimensões, baseados em zonas térmicas, que é um volume de ar assumido como tendo propriedades termodinâmicas homogêneas. A zona térmica é usada para representar um recinto, parte dele ou vários deles. As edificações são caracterizadas por suas variáveis arquitetônicas, pelos seus materiais construtivos e suas correspondentes camadas. A simulação térmica é realizada e, dentre outros parâmetros, obtém-se a variação temporal da temperatura e da umidade do ar no interior dos recintos. Esses resultados são, depois, aplicados no módulo acústico do ESP-r para a obtenção do tempo de reverberação (Apêndice A).

Para a avaliação do desempenho térmico e acústico são parâmetros necessários as propriedades de massa e térmicas dos elementos componentes dos sistemas de fechamento interno e externo da edificação, como massa específica (ρ) , condutividade térmica (k_t) e calor específico (c_e) . Esses parâmetros são, geralmente, encontrados em manuais, normas e publicações de instituições de pesquisa. Também são incluídas as características geométricas tais como a forma, dimensões, espessuras das camadas, orientação dos elementos e dos componentes dos sistemas de fechamento externo e interno, além da transmitância térmica (U), absortância (α_p) e refletância à radiação solar (ρ_s) e emissividade (ε) das superfícies constituintes dos elementos dos sistemas de fechamento, bem como os coeficientes de absorção acústico dos componentes construtivos (α_i) .

Outros parâmetros necessários são a direção e velocidade dos ventos predominantes, dados climáticos locais e informações de ambientes típicos da edificação, que caracterizem sua capacidade térmica, tais como condições de ocupação da edificação durante um período de ocupação de 24 horas, número de ocupantes, atividades típicas dos ocupantes, número e tipos de equipamentos e lâmpadas.

A resposta global de uma edificação contempla as seguintes etapas:

- 1. caracterização das exigências humanas de conforto térmico e acústico;
- 2. caracterização das condições típicas de exposição ao clima e ao ruído externo;
- 3. caracterização da edificação e seu perfil de ocupação;
- 4. caracterização dos materiais, elementos e componentes da edificação;
- 5. caracterização do projeto arquitetônico (configuração dos fechamentos propostos);
- 6. simulação numérica das interações térmicas e mássicas;
- 7. obtenção do perfil da temperatura, da umidade do ar interno;
- 8. simulação numérica para obtenção do tempo de reverberação no ambiente;
- 9. avaliação das condições de conforto térmico e acústico interno.

5.1.1. Zona térmica e zona acústica

Quando uma edificação é modelada, uma zona térmica geralmente corresponde a um recinto delimitado por elementos de construção, no qual algumas variáveis, como a temperatura e a umidade do ar, são uniformes no volume delimitado. Por exemplo, uma sala de escritório pode ser modelada como uma zona térmica. Nesse caso, os limites acústicos correspondem aos limites da zona térmica, pois o volume de ar usado para avaliar o tempo de reverberação é igual ao volume delimitado pela zona térmica.

Para um espaço maior, como um átrio, por exemplo, o recinto pode ser separado em várias zonas térmicas para avaliar a distribuição da temperatura do ar em função da altura. O volume é segmentado em uma superposição de zonas térmicas. A superfície contígua a duas zonas térmicas é definida como uma superfície conceitual, que não possui propriedades e não influencia nas análises térmica e acústica. Para o estudo da acústica, a reverberação de um átrio não é a soma dos tempos de reverberação de todas as zonas térmicas. Para avaliar o tempo de reverberação de um espaço tão grande, com várias zonas térmicas, toma-se para coeficiente de absorção da superfície conceitual o valor zero em cada frequência. Dessa forma, o tempo de reverberação pode ser calculado considerando-se todas as zonas térmicas, sendo o volume de ar utilizado para esse cálculo igual à soma do volume de ar da zona térmica e a superfície correspondente à superfície de todas as zonas térmicas. Como a superfície conceitual não absorve som, por definição, ela não é considerada no cálculo do tempo de reverberação (CITHERLET, 2001).

5.1.2. Simulação térmica

Nas simulações, as condições térmicas de uma edificação são verificadas fazendo-se uma abordagem dinâmica, que busca equacionar o equilíbrio entre perdas e ganhos de energia, ocorridos simultaneamente e variáveis ao longo de um dia. Consideram-se as trocas térmicas que acontecem nos ambientes e as possibilidades de perda e/ou de ganho de energia por meio da ventilação, convecção e por condução através dos elementos da edificação.

Como nesse trabalho o estudo é proposto para edificações ventiladas naturalmente, o desempenho térmico é avaliado em função do perfil de temperatura e umidade internas.

Os dados climáticos do local das edificações modelo podem ser obtidos pelas condições dos dias típicos de verão e/ou de inverno. Entretanto, posto que as condições climáticas de verão são predominantes no país, são utilizados os dados de dias típicos de verão. Esses dados são representados pela temperatura de bulbo seco, velocidade do ar, direção do vento, irradiação solar difusa na horizontal, intensidade solar na direção normal e umidade relativa do ar.

Nas simulações não são considerados os efeitos das pontes térmicas formadas pelos perfis metálicos que compõem algumas das paredes em multicamadas. Isso, contudo, não produz erro considerável, pois os ganhos adicionais de calor quando se consideram esses perfis em edificações naturalmente ventiladas são da ordem de 0,55% (GOMES, 2012).

5.1.3. Avaliação acústica pelo cálculo do tempo de reverberação

Para a avaliação acústica é proposto o cálculo ou a simulação do tempo de reverberação (*TR*) das superfícies dos fechamentos e dos demais componentes das edificações. No cálculo do tempo de reverberação, é possível obter sua variação temporal, aplicando-se as equações de Sabine, Millington, Eyring e Arau-Puchades. Na obtenção do tempo de reverberação por simulações, utiliza-se o módulo acústico do ESP-r, que aplica as equações de Sabine, Millington e Eyring, e esse parâmetro é obtido para um determinado horário do dia. Nos dois casos, para uma dada frequência, o tempo de reverberação é obtido pelas Equações 2.18 e 2.20, que são funções do volume e da temperatura absoluta do ar do recinto bem como da área total equivalente do fechamento, considerando a presença de mobiliários, ocupantes e ar (CITHERLET; HAND, 2002).

Dessa forma, é necessário informar a capacidade dos materiais aplicados no interior das edificações em absorver o ruído interno, descrita pelo coeficiente de absorção sonora (α_i).

Durante o processo de cálculo seleciona-se uma ou mais zonas a serem analisadas e, para cada superfície detectada, o coeficiente de absorção correspondente é usado para determinar a área de superfície equivalente conforme o método de cálculo selecionado. A contribuição de absorção sonora pelo ar pode ser incluída de acordo com a temperatura e umidade obtida pela simulação térmica. Essa área de absorção equivalente é convertida em tempo de reverberação, que é determinado para as frequências de banda de oitava (125, 250, 500, 1000, 2000 e 4000 Hz). Como itens de resposta podem-se obter também as áreas equivalentes, A_f^t , e os coeficientes de absorção sonora do ar, m.

5.2. Avaliação acústica pelo método gráfico

Para a avaliação acústica é proposta também a estimativa da perda na transmissão sonora nos painéis simples (isotrópicos e ortotrópicos) e em multicamadas usando os métodos gráficos apresentados no Capítulo 2.

Para a observação do comportamento acústico do material em questão, os resultados da perda na transmissão sonora em função da frequência são lançados em gráficos, com os resultados obtidos para o tempo de reverberação também em função da frequência.

5.3. Integração entre desempenho térmico e acústico

Na Figura 5.1 mostra-se um fluxograma com os principais itens para a avaliação integrada do desempenho térmico e acústico de uma edificação pelo método proposto, tomando-se como base o pré-projeto da edificação. O desempenho da edificação é analisado, observando-se os critérios exigidos pelas normas técnicas para então se definir o projeto executivo.

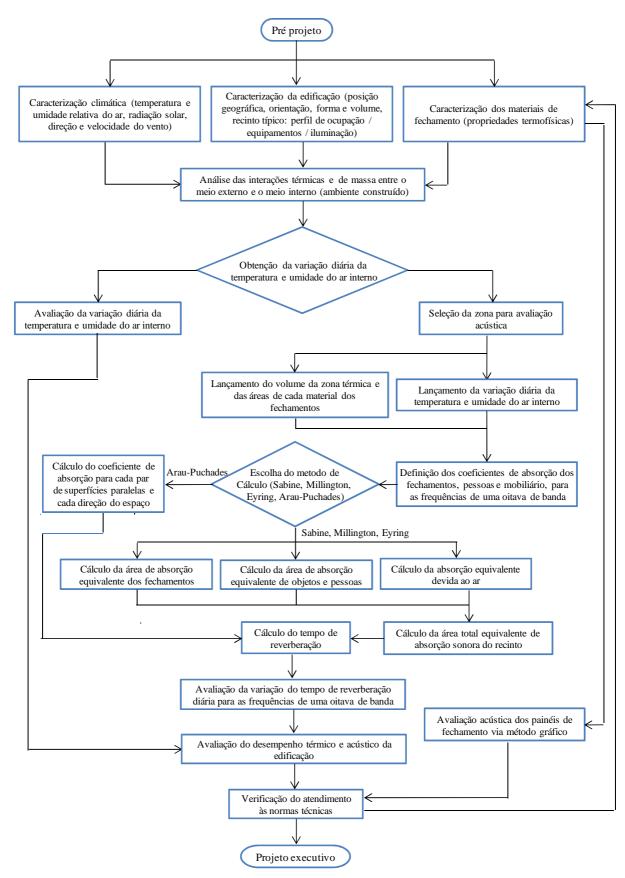


Figura 5.1 – Fluxograma dos principais itens para a avaliação do desempenho térmico e acústico de uma edificação segundo o método proposto

6. AVALIAÇÃO DO DESEMPENHO TÉRMICO E ACÚSTICO DE EDIFICAÇÕES

Nesse capítulo as avaliações de desempenho térmico e acústico são aplicadas em estudos de caso que consistem em três edificações, utilizando-se os fechamentos descritos no Capítulo 4. A avaliação de desempenho térmico é feita por meio de simulações numéricas e a avaliação de desempenho acústico é realizada aplicando-se o cálculo do tempo de reverberação, usando-se a formulação empírica, apresentada no Capítulo 2, e também simulações numéricas.

Na seção seguinte descrevem-se as edificações modelo e os resultados das análises térmicas e acústicas são mostradas na subseção após. Para configurar os ambientes, os fechamentos internos e externos são variados durante as simulações, aplicando-se os seguintes fechamentos simples apresentados na Tabela 4.3, que são PLC(100), GEA(100), PMC(100), PMC(225), CCA(100), CCA(275), EPS(100), EPS(275) e ATC(150), e os fechamentos compostos por multicamadas apresentados na Tabela 4.4.

Alguns sistemas de fechamento são conceituais, ou seja, não são aplicadas na prática. Por exemplo, quando se usa o gesso acartonado como fechamento externo ou o fechamento em pré-moldado de concreto constituído por multicamadas. Mesmo assim, esses sistemas de fechamento são aplicados nas simulações para fins de comparação entre as várias situações.

6.1. Estudos de caso

O primeiro estudo de caso é uma edificação projetada para as simulações, chamada de Edifício I e trata-se de um pequeno chalé, que possui área de 54 m². Está dividida em quatro zonas térmicas denominadas de sala, dormitório, banheiro e átrio. Seu pé direito é de 3,0 m e a altura total é de 4,20 m. Na Figura 6.1 são mostrados os desenhos em perspectiva da edificação, com as fachadas oeste e sul, a planta baixa e uma perspectiva do interior da edificação geradas pelo ESP-r, bem como sua orientação.

A segundo estudo de caso é uma edificação, chamada de Edifício II, que constitui-se de uma ala adaptada de um andar típico do Instituto de Ciências Exatas e Biológicas (ICEB) da Universidade Federal de Ouro Preto, situada na cidade de Ouro Preto-MG. Essa edificação possui três pavimentos de 525 m² de área cada um, e o andar aplicado nas simulações situa-se no segundo pavimento. Possui 3,80 m de pé direito e é dividido em oito zonas térmicas, sendo quatro salas para seminários (sse1, sse2, sse3 e sse4), três laboratórios de informática (lab1,

lab2 e lab3) e um corredor para circulação de pessoas (circ). Na Figura 6.2 são mostradas uma foto da fachada leste, a planta baixa e uma perspectiva do interior da edificação geradas pelo ESP-r.

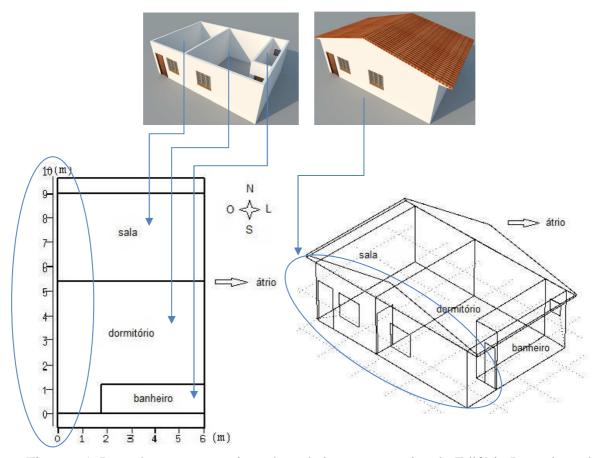


Figura 6.1. Desenho em perspectiva, planta baixa e perspectiva do Edifício I geradas pelo ESP-r

O terceiro estudo de caso, chamado de Edifício III, é o edifício central onde está o auditório principal do Centro de Convenções, também da Universidade Federal de Ouro Preto. Essa edificação, adequada para conferências e espetáculos artísticos de médio porte, possui área de 825,38 m² em um pavimento e pé direito igual a 6,0 m. O auditório principal, que está sendo analisado nessa pesquisa, possui um palco de 77 m² e 510 cadeiras estofadas com assentos móveis. Na Figura 6.3 são mostradas uma perspectiva desenhada, uma fotografia e a perspectiva gerada pelo Esp-r do interior da edificação.

Para analisar o efeito do volume nas variações da temperatura e do tempo de reverberação em um ambiente, considera-se que a edificação possui três volumes distintos, sendo um original (4740 m³), outro a metade (2370 m³) e o terceiro cujo volume é o dobro do volume original (9480 m³).

Para padronizar as edificações, exceto suas paredes, são fixados elementos de fechamento conforme Tabela 6.1, na qual está discriminada também a situação das portas e janelas (se abertas ou fechadas).

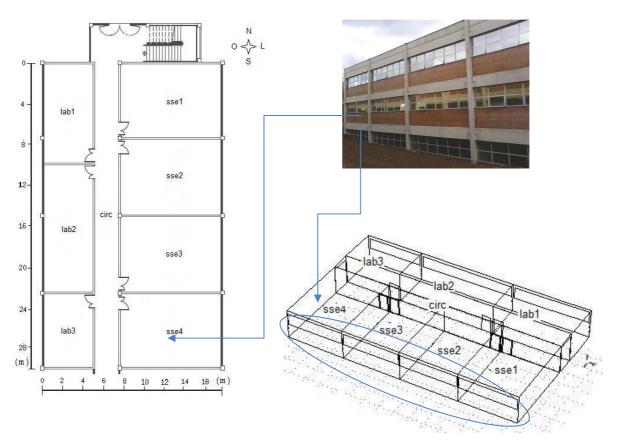


Figura 6.2 – Foto da fachada leste, planta baixa e perspectiva geradas pelo ESP-r do Edifício II

Na Tabela 6.2 são mostradas as características geométricas das zonas térmicas das edificações, sendo que os dados do Edifício III são de seu volume original. Na Tabela 6.3 estão as propriedades de massa e térmicas, bem como os coeficientes de emissão e de absorção de radiação dos elementos que compõem os sistemas de fechamento, que são a massa específica (ρ), condutividade térmica (k_t), calor específico (c_e), emissividade (ε) e absortância (α_p). Na Tabela 6.4 são mostrados os valores das transmitâncias térmicas (U) dos fechamentos, calculados pelo ESP-r.

Para as simulações da análise térmica, não é considerada no interior das edificações a presença de pessoas, lâmpadas acesas e equipamentos para o ganho de calor casual (sensível e latente). Para o fluxo de ar são adotadas as taxas de renovação de 1 ren/h no Edifício I, 5 ren/h no Edifício II e 1 ren/h no Edifício III, seguindo recomendação da norma NBR 15575 (ABNT, 2013). No Edifício II as temperaturas encontradas nas simulações realizadas com

1 ren/h não atenderam ao critério de desempenho da norma NBR 15575 (ABNT, 2013) de $T_{i,max} \leq T_{e,max}$, sendo $T_{i,max}$ a temperatura interna máxima e $T_{e,max}$ a temperatura externa máxima. As simulações foram então refeitas para 5 ren/h, obtendo-se valores de temperaturas internas mais próximos aos valores de referência.

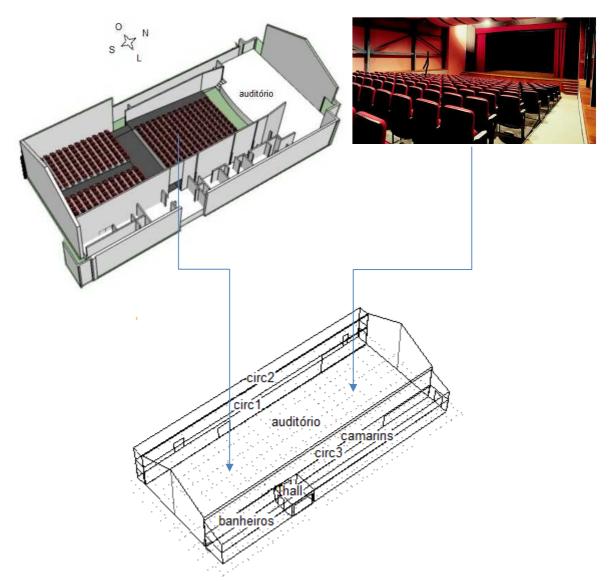


Figura 6.3 – Perspectiva desenhada, foto e perspectiva gerada pelo Esp-r mostrando o interior do Edifício III

Observando o zoneamento climático apresentado na norma NBR 15220 (ABNT, 2005a), são utilizados dados climáticos de um dia típico de projeto de verão da zona climática três, na latitude de -19,85; longitude de -43,9 e altitude de 785 m, que corresponde à cidade de Belo Horizonte-MG. Dessa forma, o arquivo de clima, que representa a variação temporal da temperatura externa, é carregado para o ESP-r a partir dos dados registrados na pasta EPW (*EnergyPlus Weather Format*), acessando-se o *site* http://apps1.eere.energy.gov/

 $buildings/energyplus/cfm/weather_data3.cfm/region=3_south_america_wmo_region_3/\\country=BRA/cname=Brazil (ENERGYPLUS, s.d.).$

Tabela 6.1. Elementos de fechamento fixados nos Edifícios I, II e III

Elemento	Composição (espessura em mm)			
	Edifício I			
Cobertura	Laje em concreto celular autoclavado (120), revestida internamente com			
Coocituia	argamassa (20), e telha cerâmica (10), estando a cumeeira a 1,0 m acima da laje			
Fech. banheiro	Parede (105), composta por PLC(10)-ar(75)-PLC(10) e cerâmica esmaltada (10)			
Janelas	Vidro transparente comum (4) – abertas			
Piso	Material cerâmico (10), contrapiso de argamassa (20) e base de concreto (80)			
Porta externa	Madeira de massa específica média (25) – fechada			
Portas internas	Madeira em compensado (25) – fechadas			
	Edifício II			
Janelas	Vidro comum transparente (4) – abertas			
Piso-teto	Cerâmica esmaltada (10) sobre laje de concreto celular autoclavado – CCA (170)			
Portas externas	Vidro comum transparente (6) – abertas			
Portas internas	Madeira em compensado (25) – fechadas			
	Edifício III			
Cobertura	Telha cerâmica (10)			
Piso madeira	Madeira de massa específica média (30) sobre camada de ar (100) e concreto (20)			
Portas externas	Madeira de massa específica media (25) – abertas			
Portas internas	Madeira em compensado (25) – abertas (quando são destinadas a passagem do			
ronas internas	público) e fechadas (quando são de serviço)			

Tabela 6.2. Características geométricas das zonas térmicas das edificações modelo

Zona	Volume do	Área de piso	Área de	Área de portas	Área de			
Zona	recinto (m³)	(m^2)	paredes (m ²)	(m^2)	janelas (m²)			
	Edifício I							
sala	64,80	21,60	99,40	3,78	1,44			
dormitório	82,10	27,40	62,60	3,15	1,44			
banheiro	15,10	5,04	42,10	1,26	0,36			
átrio	17,30	61,20	137,00	0,00	0,00			
		Edifí	cio II					
sse1	285,00	75,00	119,90	2,52	10,58			
sse2	285,00	75,00	119,90	2,52	10,58			
sse3	285,00	75,00	119,90	2,52	10,58			
sse4	285,00	75,00	119,90	2,52	10,58			
lab1	190,00	50,00	97,56	2,52	13,92			
lab2	238,00	62,50	112,90	2,52	17,54			
lab3	143,00	37,50	82,20	2,52	10,29			
circ	285,00	75,00	213,70	33,28	0,00			
		Edifío	cio III					
auditório	3600,00	520,00	657,55	8,40	0,00			
banheiros	111,00	41,80	78,04	2,52	0,00			
camarins	232,00	87,48	125,47	22,40	0,00			
hall	35,60	13,70	25,67	13,02	0,00			
circ1	255,00	71,50	256,04	15,54	0,00			
circ2	179,00	71,50	207,50	0,00	0,00			
circ3	327,00	143,00	198,31	0,00	0,00			

Tabela 6.3. Propriedades de massa e térmicas dos elementos dos sistemas de fechamento

Material	ρ (kg/m ³)	k_t (W/(m K))	c_e (J/(kg K))	ε	a_p
Ar	1,21	1,000	1,00	0,90	0,50
Argamassa	2100	1,150	1000	0,90	0,50
Cerâmica esmaltada	1900	0,085	837	0,92	0,70
Concreto	2400	1,930	1000	0,90	0,70
Concreto celular autocl.	500	0,170	1000	0,90	0,65
Gesso acartonado	750	0,350	840	0,90	0,50
Lã de vidro	100	0,045	700	0,90	0,50
Placa cimentícia	1330	0,350	1050	0,96	0,60
Poliestireno expandido	25	0,030	1000	0,90	0,30
Porta de massa específica média / madeira do piso	900	0,130	2000	0,91	0,70
Porta em compensado	800	0,150	2093	0,91	0,65
Pré-moldado de concreto	2400	1,930	1000	0,90	0,70
Telha cerâmica	1900	0,850	840	0,90	0,60
Tijolo cerâmico	1800	1,050	920	0,95	0,80
Vidro	2500	1,050	750	0,83	0,05

Tabela 6.4. Transmitâncias térmicas dos fechamentos (U)

Material parede e espessura (mm)	<i>U</i> (W/(m ² K))	Material parede e espessura (mm)	<i>U</i> (W/(m ² K))
	Paredes	simples	
PLC(100)	2,194	CCA(275)	0,559
GEA(100)	2,194	EPS(100)	0,490
PMC(100)	4,508	EPS(275)	0,130
PMC(225)	3,489	ATC(150)	3,231
CCA(100)	1,319		
	Paredes em r	nulticamadas	
PLC(10)-ar(75)-PLC(10)	3,310	PLC(10)-LVI(50)-ar(25)-GEA(12,5)	0,730
PLC(10)-LVI(50)-ar(25)-PLC(10)	0,734	PLC(12)-ar(90)-GEA(15)	2,966
PLC(12)-ar(90)-PLC(12)	3,043	PLC(12)-LVI(50)-ar(40)-GEA(15)	0,715
PLC(12)-LVI(50)-ar(40)-PLC(12)	0,720	PMC(75)-ar(75)-PLC(10)	3,201
GEA(12,5)-ar(75)-GEA(12,5)	3,160	PMC(75)-LVI(50)-ar(25)-PLC(10)	0,728
GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	0,726	PMC(75)-ar(75)-GEA(12,5)	3,129
GEA(15)-ar(90)-GEA(15)	2,893	PMC(75)-LVI(50)-ar(25)-GEA(12,5)	0,724
GEA(15)-LVI(50)-ar(40)-GEA(15)	0,711	CCA(100)-ar(75)-PLC(10)	1,160
PMC(75)-ar(75)-PMC(75)	3,099	CCA(100)-LVI(50)-ar(25)-PLC(10)	0,520
PMC(75)-LVI(50)-ar(25)-PMC(75)	0,723	CCA(100)-ar(75)-GEA(12,5)	1,151
CCA(100)-ar(75)-CCA(100)	0,703	CCA(100)-LVI(50)-ar(25)-GEA(12,5)	0,518
CCA(100)-LVI(50)-ar(25)-CCA(100)	0,403	EPS(100)-ar(75)-PLC(10)	0,277
EPS(100)-ar(75)-EPS(100)	0,247	EPS(100)-LVI(50)-ar(25)-PLC(10)	0,214
EPS(100)-LVI(50)-ar(25)-EPS(100)	0,200	EPS(100)-ar(75)-GEA(12,5)	0,277
PLC(10)-ar(75)-GEA(12,5)	3,233	EPS(100)-LVI(50)-ar(25)-GEA(12,5)	0,214
	Demais fe	chamentos	
Laje em concreto celular autoclavado	1,323	Porta de massa específica média	2,760
Parede banheiro (PLC-ar-PLC-cerâm)	2,382	Porta em compensado	2,970
Piso cerâmico	2,587	Telha cerâmica	6,589
Piso de madeira	2,486	Vidro (4)	5,753
Piso-teto	1,031/1,111	Vidro (6)	5,691

Fontes: ISO 6946 (ISO, 2007); NBR 15220 (ABNT, 2005a)

As simulações são realizadas para um dia típico de janeiro de 2000. Os outros dados climáticos utilizados na avaliação térmica, tais como a variação da radiação solar incidente em plano horizontal (RS), da temperatura de bulbo seco (TBS), da radiação solar incidente na direção normal (RS Total), da velocidade e direção do vento predominante e da umidade relativa do ar externo (Φ_e), correspondem a valores médios para esse mês (Tabela 6.5).

No cálculo do tempo de reverberação, também não é considerada a existência de pessoas, objetos e mobiliário no interior dos recintos dos Edifícios I e II. No Edifício III conta-se com a existência de 510 cadeiras estofadas de auditório. Como são considerados os fechamentos e o ar presente, são necessários os coeficientes de absorção sonora (α_i) dos materiais aplicados nos ambientes (Tabela 6.6).

Tabela 6.5. Outros dados climáticos utilizados na avaliação (valores médios)

RS	TBS	RS Total		Vento			
(W/m^2)	(°C)	(W/m^2)	Velocidade	Direção	Φ_e		
(vv /III)	(C)	(vv / III)	(m/s)	(graus no sentido horário do Norte)	(%)		
125,2	24,0	156,3	2,0	80,2	73,3		

Tabela 6.6. Coeficientes de absorção sonora (α_i) dos materiais aplicados nos ambientes

E1		Frequên	cia central de	banda de oit	ava (Hz)				
Elemento	125	250	500	1000	2000	4000			
Material das paredes									
PLC ³	0,23	0,12	0,08	0,06	0,05	0,05			
GEA ³	0,26	0,13	0,09	0,05	0,05	0,05			
PMC ¹	0,01	0,01	0,01	0,02	0,02	0,02			
CCA ⁴	0,05	0,10	0,15	0,15	0,20	0,25			
EPS e ATC (argam) ³	0,01	0,01	0,02	0,02	0,02	0,03			
]	Edifício I – o	utros materia	is					
Piso (cerâm) 1, 2	0,01	0,01	0,01	0,01	0,02	0,02			
Teto (argam) ³	0,01	0,01	0,02	0,02	0,02	0,03			
Janela (vidro) 1, 3	0,35	0,25	0,18	0,12	0,07	0,04			
Porta ¹	0,58	0,22	0,07	0,04	0,03	0,07			
	F	Edifício II – o	utros materia	uis					
Piso (cerâm) 1,2	0,01	0,01	0,01	0,01	0,02	0,02			
Teto (concreto) ¹	0,01	0,01	0,01	0,02	0,02	0,02			
Janela (vidro) 1,3	0,35	0,25	0,18	0,12	0,07	0,04			
Porta ¹	0,58	0,22	0,07	0,04	0,03	0,07			
Edifício III – outros materiais									
Cadeiras estofadas ¹	0,08	0,16	0,22	0,23	0,24	0,24			
Cobertura (telha) ²	0,01	0,01	0,01	0,02	0,02	0,02			
Piso madeira ¹	0,40	0,30	0,20	0,17	0,15	0,10			
Portas ¹	0,58	0,22	0,07	0,04	0,03	0,07			

Fontes: (1) BISTAFA, 2006; (2) HASSAN, 2009; (3) MAEKAWA; RINDEL; LORD, 2011; (4) RILEM, 2005

Na Figura 6.4 são representados graficamente os coeficientes de absorção sonora dos materiais das paredes aplicados no interior da edificação. Para o cálculo do tempo de reverberação, no Edifício III, o espaço aberto entre o auditório e os camarins e o auditório e o corredor, chamado de circ1, é tratado como sendo uma superfície conceitual cujos coeficientes de absorção sonora são iguais a zero em cada frequência, conforme Item 5.1.1.

Figura 6.4 – Coeficientes de absorção sonora dos materiais das paredes aplicadas no interior dos recintos das edificações

6.2. Resultados e análises

Utilizando os parâmetros discriminados, foram realizadas simulações numéricas para as edificações, obtendo-se a temperatura e calculando-se o tempo de reverberação para as três edificações. A umidade relativa do ar nos ambientes externo e internos (zonas térmicas) também é obtida, mas não é representada aqui.

6.2.1. Resultados de temperatura e tempo de reverberação, dormitório, Edifício I

Nas Figuras 6.5 a 6.13 são mostrados os resultados da evolução temporal da temperatura do ar no ambiente externo e interno e do tempo de reverberação para cada fechamento aplicado ao dormitório do Edifício I. O tempo de reverberação desses resultados é o calculado pelo método de Sabine, considerando a frequência de 1000 Hz, usando a formulação apresentada no Capítulo 2. A temperatura externa máxima é de 27,5 °C e ocorre às 14h30.

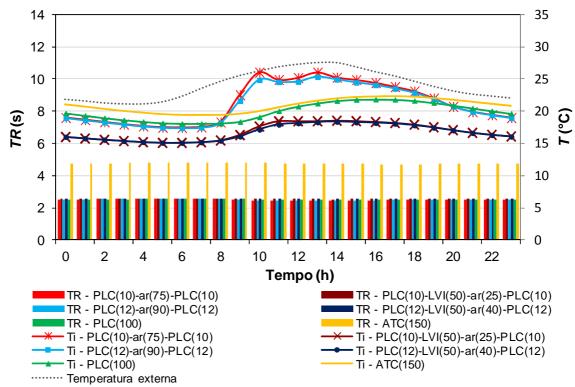


Figura 6.5 – Tempo de reverberação e temperatura interna para fechamentos de painéis simples e em multicamadas de placa cimentícia e de alvenaria – dormitório

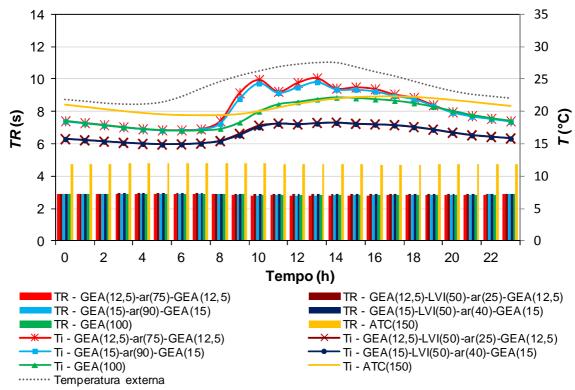


Figura 6.6 – Tempo de reverberação e temperatura interna para fechamentos de painéis simples e em multicamadas de gesso acartonado e de alvenaria – dormitório

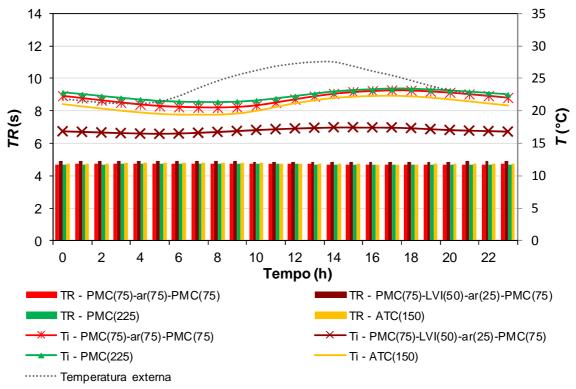


Figura 6.7 – Tempo de reverberação e temperatura interna para fechamentos de painéis simples e em multicamadas de pré-moldado de concreto e de alvenaria – dormitório

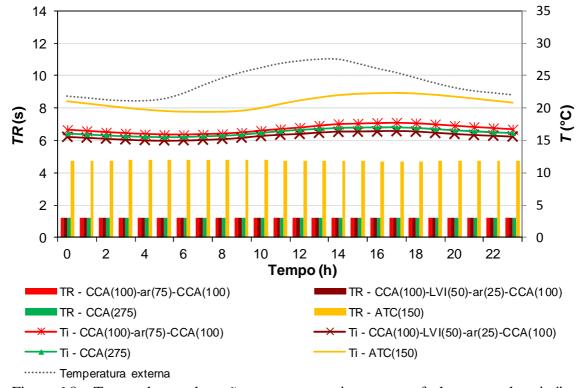


Figura 6.8 – Tempo de reverberação e temperatura interna para fechamentos de painéis simples e em multicamadas de concreto celular autoclavado e de alvenaria – dormitório

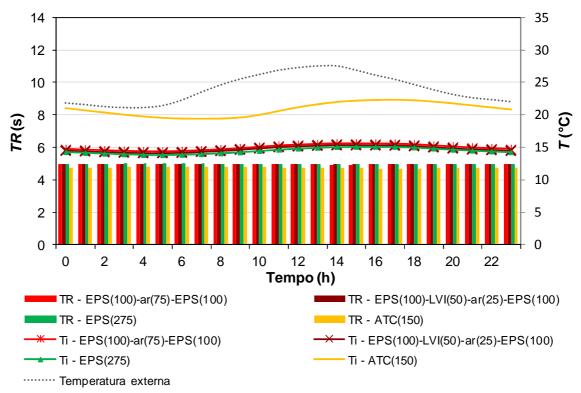


Figura 6.9 – Tempo de reverberação e temperatura interna para fechamentos de painéis simples e em multicamadas de poliestireno expandido e de alvenaria – dormitório

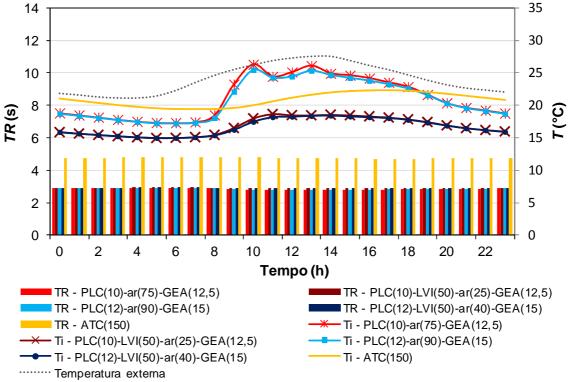


Figura 6.10 – Tempo de reverberação e temperatura interna para fechamentos de painéis simples e em multicamadas de placa cimentícia com gesso acartonado e de alvenaria – dormitório

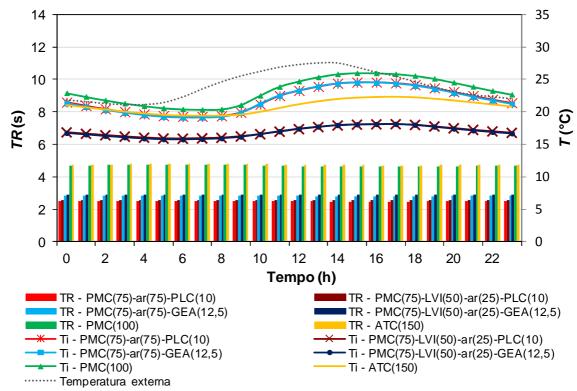


Figura 6.11 – Tempo de reverberação e temperatura interna para fechamentos de painéis simples e em multicamadas de pré-moldado de concreto com placa cimentícia e gesso acartonado e de alvenaria – dormitório

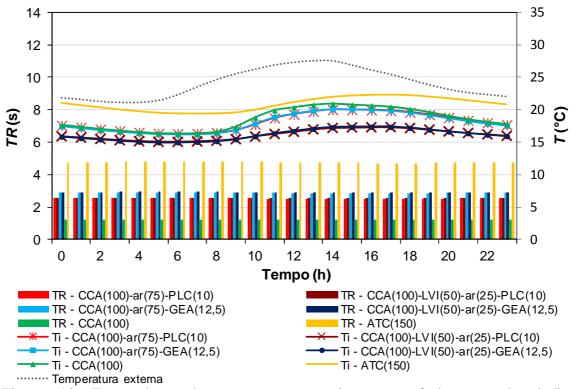


Figura 6.12 – Tempo de reverberação e temperatura interna para fechamentos de painéis simples e em multicamadas de concreto celular autoclavado com placa cimentícia e gesso acartonado e de alvenaria – dormitório

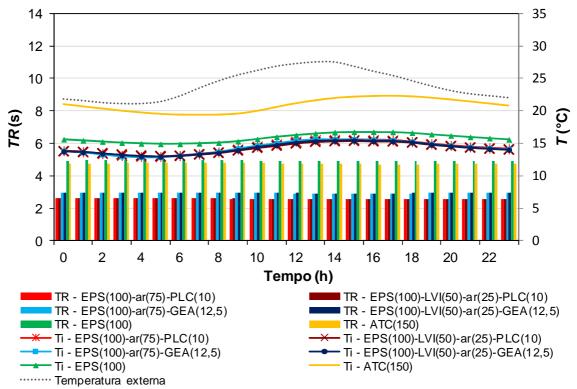


Figura 6.13 – Tempo de reverberação e temperatura interna para fechamentos de painéis simples e em multicamadas de poliestireno expandido com placa cimentícia e gesso acartonado e de alvenaria – dormitório

6.2.2. Análise dos resultados de temperatura e tempo de reverberação, dormitório, Edifício I

Em relação ao desempenho térmico, de modo geral, os fechamentos analisados para o dormitório do Edifício I atendem ao critério mínimo de desempenho térmico, $T_{i,max} \leq T_{e,max}$, considerando a zona bioclimática três. Os fechamentos em multicamadas, intermediados por lã de vidro e ar, em sua maioria, apresentam temperaturas internas menores, mostrando desempenho térmico melhor do que os mesmos fechamentos sem esse material isolante. Isso porque a presença da lã de vidro reduz o valor da transmitância térmica dos fechamentos, diminuindo a taxa de transferência de calor através da parede (Tabela 6.4).

Considerando as composições de fechamentos de espessuras menores, ou seja, os de gesso acartonado e de placa cimentícia, os fechamentos constituídos por PLC(10) e PLC(12), GEA(12,5) e GEA(15), Figuras 6.5, 6.6 e 6.10, apresentam comportamento semelhante entre si durante o período. Nesses fechamentos, o uso da lã de vidro na cavidade de ar melhora a eficiência do isolamento térmico. O comportamento térmico do fechamento constituído pelo painel simples de mesmo material e pela alvenaria de tijolo cerâmico é intermediário entre o

painel em multicamadas com ar e lã de vidro e o mesmo painel sem lã de vidro, durante o dia. Considerando também a temperatura externa máxima de 27,5 °C, que ocorre às 14h:30, o fechamento em GEA(15) com LVI, Figura 6.6, resulta a menor temperatura interna (18,2 °C).

Para as composições de fechamentos de espessuras maiores, ou seja, os de pré-moldado de concreto, concreto celular autoclavado e poliestireno expandido, nos fechamentos em multicamadas constituídos por PMC(75), EPS(100) e CCA(100), Figuras 6.7 a 6.9, a existência da lã de vidro promove uma diferença menor no comportamento térmico. Os painéis constituídos por PMC com LVI resultam temperaturas internas menores do que o mesmo painel sem LVI, do que o mesmo painel simples e do que a alvenaria de tijolo cerâmico (Figura 6.7).

No entanto, os fechamentos constituídos por CCA(100) e EPS(100), sem e com LVI, Figuras 6.8 e 6.9, mostram comportamento térmico semelhante aos painéis simples desses mesmos materiais, mas ainda proporcionam temperaturas menores do que as temperaturas resultantes do fechamento em alvenaria de tijolo cerâmico. Para o fechamento em EPS(100) com LVI, Figura 6.9, tem-se a menor temperatura interna (15,4 °C), no horário de 14h30.

Para os fechamentos em multicamadas mistos, cujos resultados são mostrados nas Figuras 6.10 a 6.13, o uso da lã de vidro promove temperaturas internas menores para os fechamentos constituídos por PMC(75) com PLC(10) e com GEA(12,5), Figura 6.11, e também por CCA(100) com PLC(10) e com GEA(12,5), Figura 6.12. Os fechamentos mistos constituídos por EPS(100) com PLC(10) e com GEA(12,5), sem e com lã de vidro, Figura 6.13, mostram o mesmo comportamento térmico. Esses fechamentos mistos em sua maioria resultam temperaturas menores do que as temperaturas resultantes do fechamento em alvenaria de tijolo cerâmico.

Comparando todos os fechamentos analisados, Figuras 6.5 a 6.13, para a temperatura externa máxima de 27,5 °C, o fechamento em EPS(100) com PLC e LVI, Figura 6.13, resulta a menor temperatura interna (15,3 °C), mostrando o melhor desempenho térmico. O fechamento em PLC(10) sem LVI, Figura 6.5, resulta a maior temperatura interna (25,3 °C), mostrando o pior desempenho térmico (Tabela B.1).

Em relação ao desempenho acústico, avaliado pelo tempo de reverberação, para a frequência considerada de 1000 Hz, observa-se que os fechamentos não atendem ao critério de tempo de reverberação no valor de 0,5 s. Entretanto, nota-se que não está sendo considerada a presença de pessoas e mobiliário, o que tende a diminuir a área de absorção total e elevar o tempo de

reverberação, que é praticamente constante ao longo do dia, para um determinado fechamento. De modo geral, os fechamentos intermediados por lã de vidro mostram um tempo de reverberação um pouco maior do que os outros fechamentos, em média 0,06 s, no período do dia com temperaturas externas mais elevadas (09h00-18h00; Tabela B.1). Esse fato se deve à redução do valor da umidade do ar nesse período e a consequente diminuição da absorção sonora em razão da presença do ar no recinto (Figuras 6.5 a 6.13). No entanto, no caso dos fechamentos constituídos por CCA(100) e EPS(100), a presença da lã de vidro na cavidade de ar praticamente não influencia no valor do tempo de reverberação (Figuras 6.8 e 6.9). Os painéis simples proporcionam tempos de reverberação semelhantes aos fechamentos em multicamadas do mesmo material (Figuras 6.5 a 6.9). Os fechamentos simples e em multicamadas constituídos por PLC(10), PLC(12), GEA(12,5), GEA(15), CCA(100) e CCA(275) proporcionam tempos de reverberação menores do que os do fechamento em alvenaria de tijolo cerâmico. Os demais fechamentos mostram tempos de reverberação próximos aos do fechamento em alvenaria de tijolo cerâmico (Figuras 6.5 a 6.9).

Dentre as composições de fechamentos constituídos por placa cimentícia e gesso acartonado, os fechamentos em PLC(10) e PLC(12), ambos sem LVI, apresentam o menor tempo de reverberação (2,47 s), no horário considerado (Figuras 6.5 e 6.6). Para as composições de fechamento em PMC(75), EPS(100) e CCA(100), os fechamentos em CCA(100) sem e com LVI apresentam o menor tempo de reverberação (1,23 s) (Figuras 6.7 a 6.9). Considerando as composições de fechamentos em multicamadas mistos, mostradas nas Figuras 6.10 a 6.13, o fechamento em PMC(75) com PLC(10) sem LVI apresenta o menor tempo de reverberação (2,48 s) no horário de 14h30 (Tabela B.1).

Dentre todos os fechamentos analisados, o fechamento em EPS(100) com LVI proporciona o maior tempo de reverberação (4,95 s), mostrando o pior desempenho acústico, e os fechamentos em CCA(100) sem e com LVI proporcionam o menor tempo de reverberação (1,23 s), com o melhor desempenho acústico (Figuras 6.5 a 6.13, Tabela B.1).

Nesse estudo de caso (Edifício I), o fechamento que demonstra o melhor desempenho térmico nem sempre oferece o melhor desempenho acústico. Entretanto, de modo geral, o melhor desempenho térmico e acústico é mostrado pelo fechamento em CCA(100) com LVI, proporcionando $T_i = 16,3$ °C e TR = 1,2 s. Ressalta-se que o CCA(100) possui maior coeficiente de absorção sonora, para a frequência de 1000 Hz, e apresenta o menor tempo de reverberação, mostrando que esse coeficiente é fator preponderante na definição do

desempenho acústico do fechamento (Figura 6.4). O fechamento em ATC(150) apresenta desempenho térmico intermediário e baixo desempenho acústico, com $T_i = 22,0$ °C e TR = 4,7 s (Tabela B.1).

6.2.3. Resultados de temperatura e tempo de reverberação, sse4, Edifício II

Nas Figuras 6.14 e 6.22 são mostrados os resultados da evolução temporal da temperatura e do tempo de reverberação para a sala de seminários sse4 do Edifício II, no período de 08 as 22 horas, período diário de utilização dessa sala de seminários. Nesse caso, o tempo de reverberação também é calculado pelo método de Sabine, na frequência de 1000 Hz, usando a formulação apresentada no Capítulo 2.

Nas Figuras 6.23 a 6.35 são mostrados os resultados obtidos para os fechamentos com lã de vidro na cavidade de ar, aplicando-se os quatro métodos de cálculo do tempo de reverberação (Sabine, Millington, Eyring e Arau-Puchades), para 1000 Hz, em função do tempo. Esses resultados para essa mesma zona são também mostrados em função da frequência, para o horário de maior desconforto térmico, 14h30, quando a temperatura externa atinge o valor máximo de 27,5 °C e a umidade atinge o valor mínimo de 57,5 % (Figuras 6.36 a 6.39).

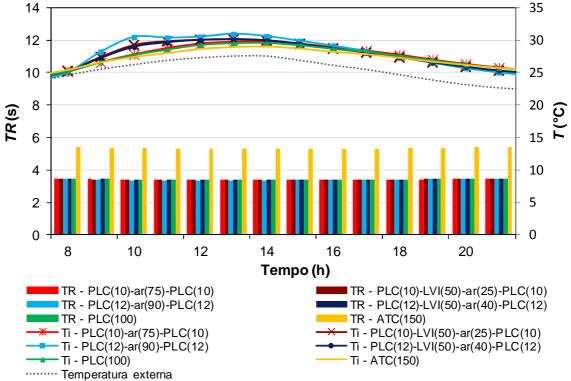


Figura 6.14 – Tempo de reverberação e temperatura interna para fechamentos de painéis simples e em multicamadas de placa cimentícia e de alvenaria – sse4

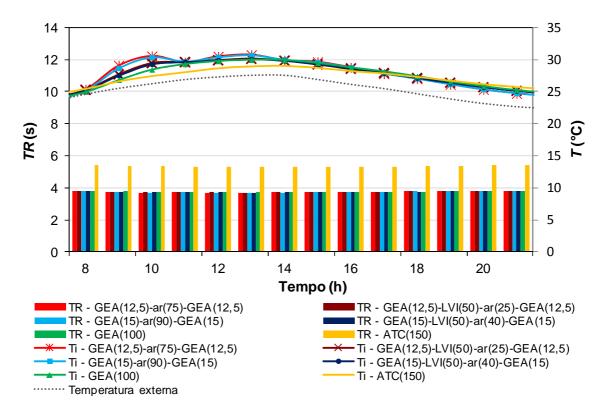


Figura 6.15 – Tempo de reverberação e temperatura interna para fechamentos de painéis simples e em multicamadas de gesso acartonado e de alvenaria – sse4

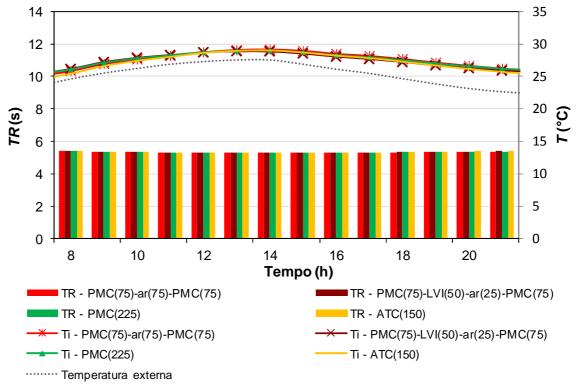


Figura 6.16 – Tempo de reverberação e temperatura interna para fechamentos de painéis simples e em multicamadas de pré-moldado de concreto e de alvenaria – sse4

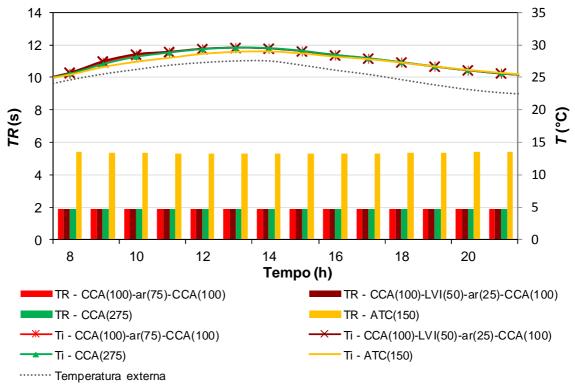


Figura 6.17 – Tempo de reverberação e temperatura interna para fechamentos de painéis simples e em multicamadas de concreto celular autoclavado e de alvenaria – sse4

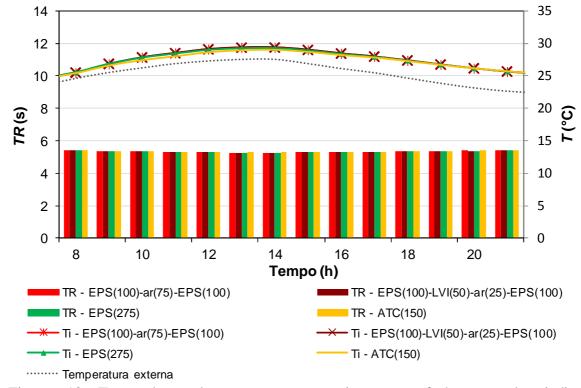


Figura 6.18 – Tempo de reverberação e temperatura interna para fechamentos de painéis simples e em multicamadas de poliestireno expandido e de alvenaria – sse4

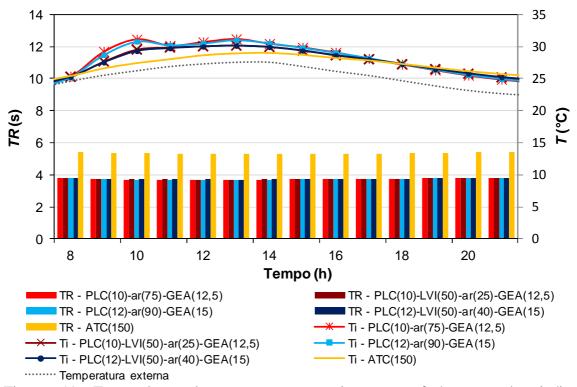


Figura 6.19 – Tempo de reverberação e temperatura interna para fechamentos de painéis simples e em multicamadas de placa cimentícia com gesso acartonado e de alvenaria – sse4

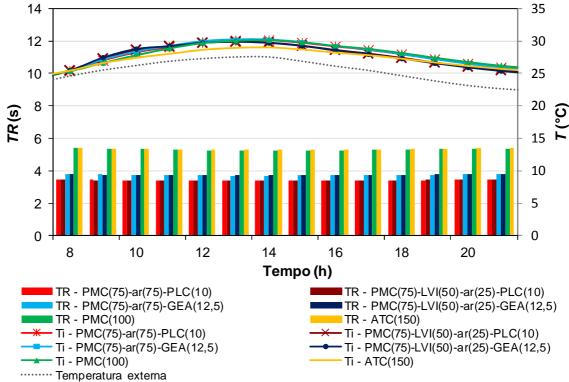


Figura 6.20 – Tempo de reverberação e temperatura interna para fechamentos de painéis simples e em multicamadas de pré-moldado de concreto com placa cimentícia e gesso acartonado e de alvenaria – sse4

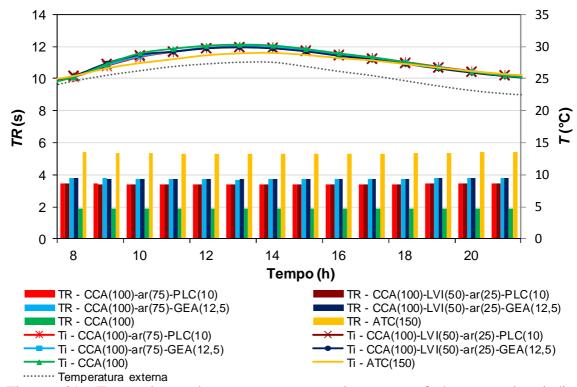


Figura 6.21 – Tempo de reverberação e temperatura interna para fechamentos de painéis simples e em multicamadas de concreto celular autoclavado com placa cimentícia e gesso acartonado e de alvenaria – sse4

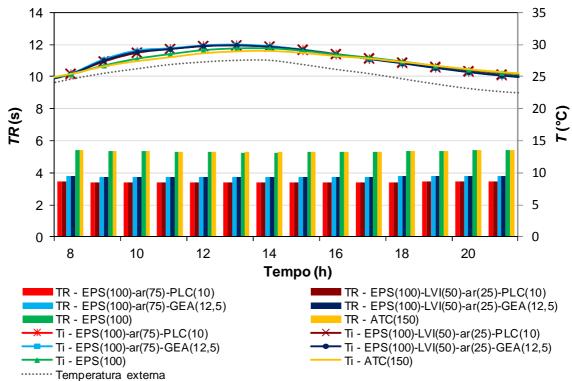


Figura 6.22 – Tempo de reverberação e temperatura interna para fechamentos de painéis simples e em multicamadas de poliestireno expandido com placa cimentícia e gesso acartonado e de alvenaria – sse4

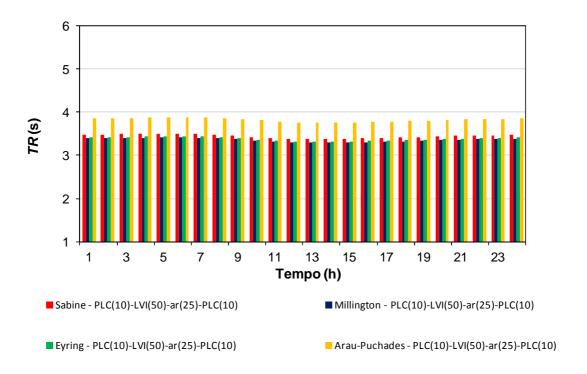


Figura 6.23 – Tempo de reverberação em função do tempo pelos métodos de Sabine, Millington, Eyring e Arau-Puchades para fechamentos de painéis em multicamadas de placa cimentícia – sse4

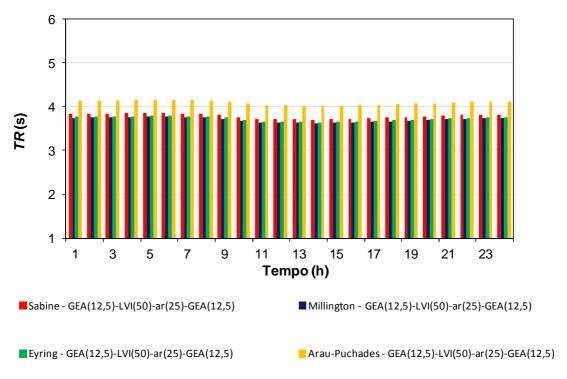


Figura 6.24 – Tempo de reverberação em função do tempo pelos métodos de Sabine, Millington, Eyring e Arau-Puchades para fechamentos de painéis em multicamadas de gesso acartonado – sse4

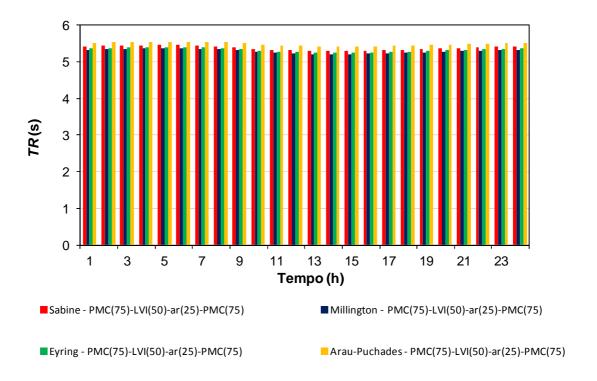


Figura 6.25 – Tempo de reverberação em função do tempo pelos métodos de Sabine, Millington, Eyring e Arau-Puchades para fechamentos de painéis em multicamadas de pré-moldado de concreto – sse4

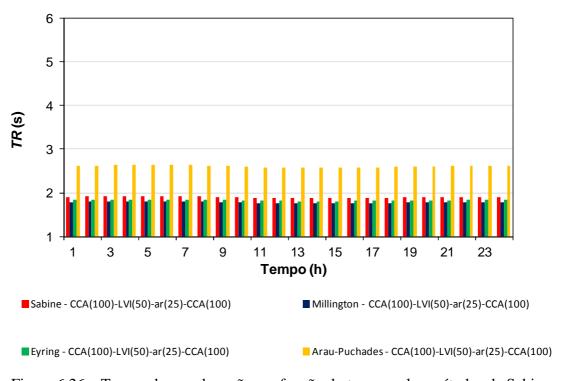


Figura 6.26 – Tempo de reverberação em função do tempo pelos métodos de Sabine, Millington, Eyring e Arau-Puchades para fechamentos de painéis em multicamadas de concreto celular autoclavado – sse4

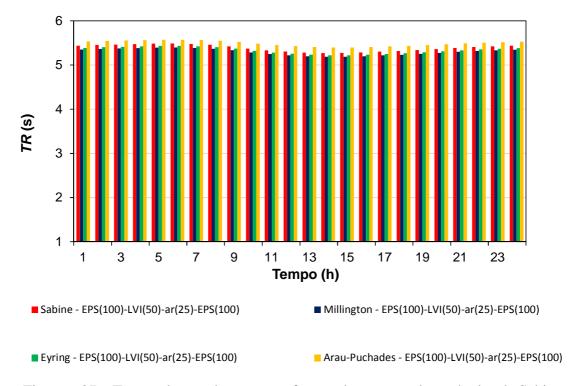


Figura 6.27 – Tempo de reverberação em função do tempo pelos métodos de Sabine, Millington, Eyring e Arau-Puchades para fechamentos de painéis em multicamadas de poliestireno expandido – sse4

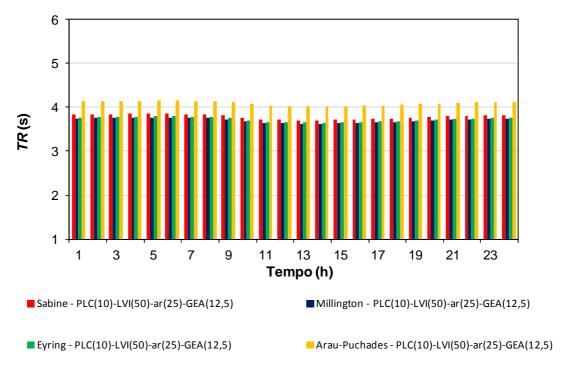


Figura 6.28 – Tempo de reverberação em função do tempo pelos métodos de Sabine, Millington, Eyring e Arau-Puchades para fechamentos de painéis em multicamadas de placa cimentícia e gesso acartonado – sse4



Figura 6.29 – Tempo de reverberação em função do tempo pelos métodos de Sabine, Millington, Eyring e Arau-Puchades para fechamentos de painéis em multicamadas de pré-moldado de concreto e placa cimentícia – sse4

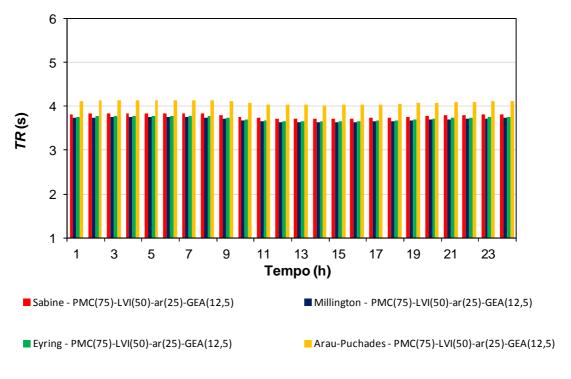


Figura 6.30 – Tempo de reverberação em função do tempo pelos métodos de Sabine, Millington, Eyring e Arau-Puchades para fechamentos de painéis em multicamadas de pré-moldado de concreto e gesso acartonado – sse4

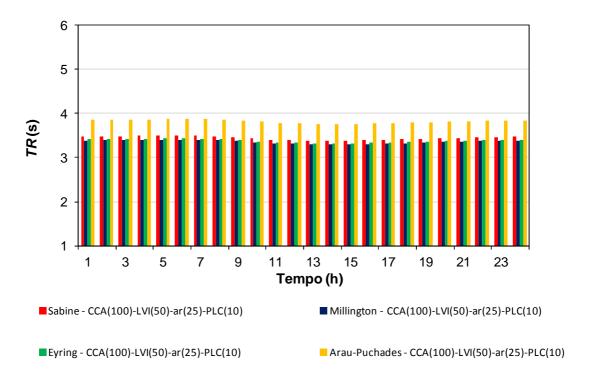


Figura 6.31 – Tempo de reverberação em função do tempo pelos métodos de Sabine, Millington, Eyring e Arau-Puchades para fechamentos de painéis em multicamadas de concreto celular autoclavado e placa cimentícia – sse4

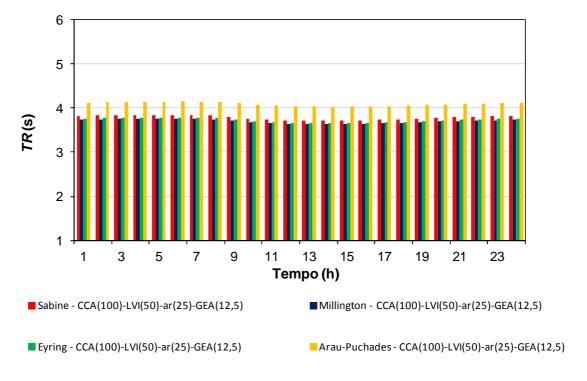


Figura 6.32 – Tempo de reverberação em função do tempo pelos métodos de Sabine, Millington, Eyring e Arau-Puchades para fechamentos de painéis em multicamadas de concreto celular autoclavado e gesso acartonado – sse4

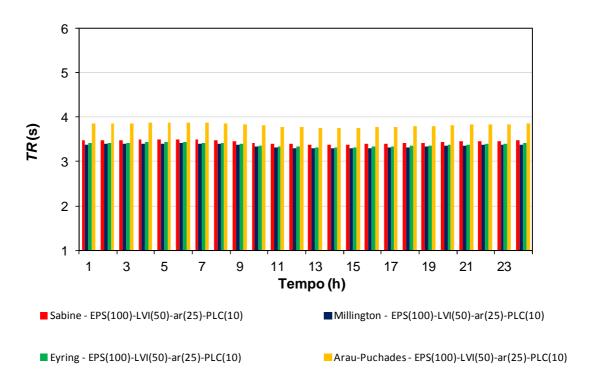


Figura 6.33 – Tempo de reverberação em função do tempo pelos métodos de Sabine, Millington, Eyring e Arau-Puchades para fechamentos de painéis em multicamadas de poliestireno expandido e placa cimentícia – sse4

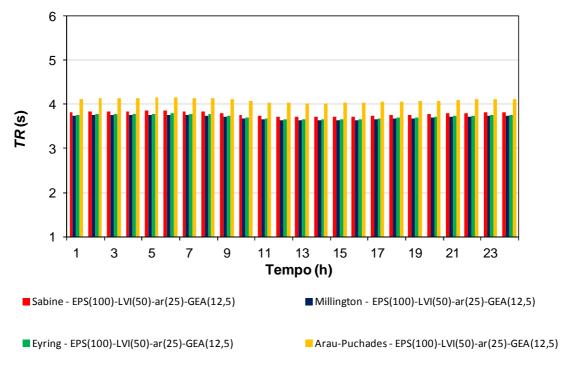


Figura 6.34 – Tempo de reverberação em função do tempo pelos métodos de Sabine, Millington, Eyring e Arau-Puchades para fechamentos de painéis em multicamadas de poliestireno expandido e gesso acartonado – sse4

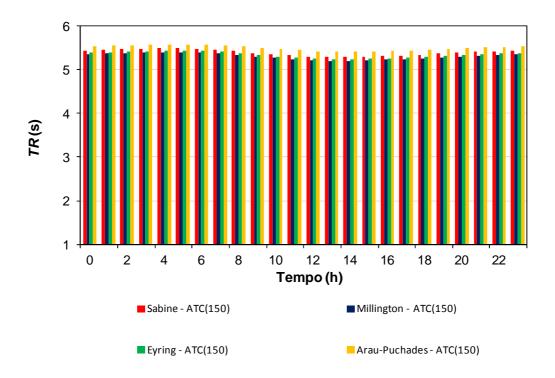


Figura 6.35 – Tempo de reverberação em função do tempo pelos métodos de Sabine, Millington, Eyring e Arau-Puchades para fechamentos de alvenaria – sse4

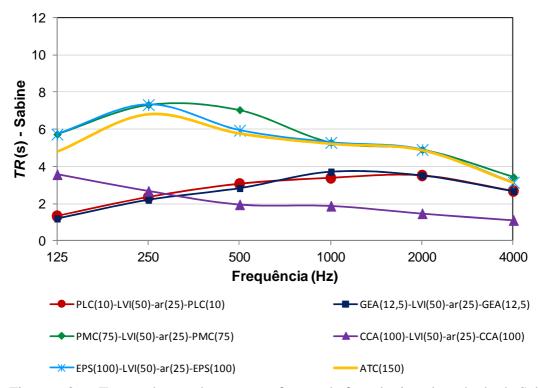


Figura 6.36 – Tempo de reverberação em função da frequência pelo método de Sabine para fechamentos de painéis em multicamadas, com lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC – sse4

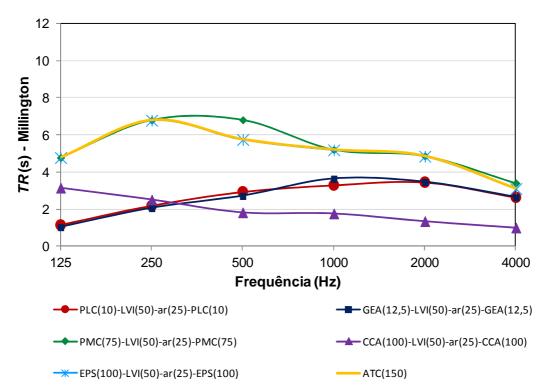


Figura 6.37 – Tempo de reverberação em função da frequência pelo método de Millington para fechamentos de painéis em multicamadas, com lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC – sse4

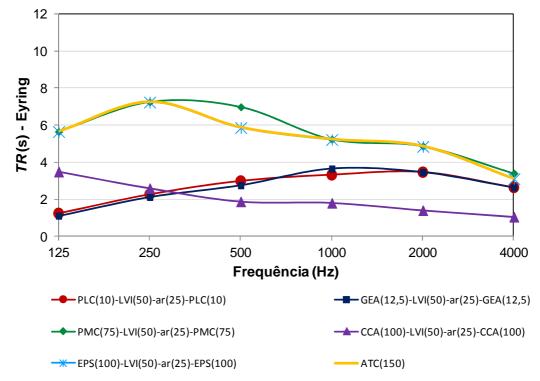


Figura 6.38 – Tempo de reverberação em função da frequência pelo método de Eyring para fechamentos de painéis em multicamadas, com lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC – sse4

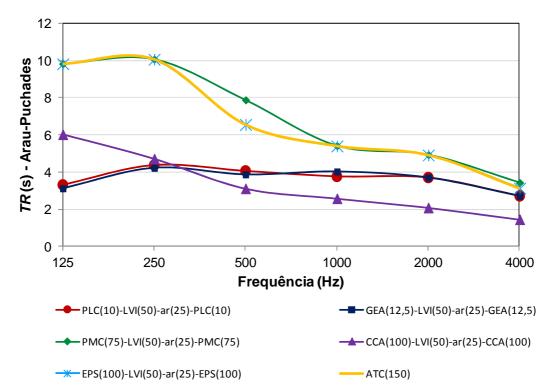


Figura 6.39 – Tempo de reverberação em função da frequência pelo método de Arau-Puchades para fechamentos de painéis em multicamadas, com lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC – sse4

6.2.4. Análise dos resultados de temperatura e tempo de reverberação, sse4, Edifício II

Em relação ao desempenho térmico, os fechamentos analisados, sejam eles em multicamadas ou em alvenaria de tijolo cerâmico, para a sala de seminários sse4 do Edifício II e zona bioclimática três, proporcionam temperaturas internas máximas um pouco maiores, em média de 2,3 °C, do que a temperatura externa máxima de 27,5 °C. Os fechamentos em multicamadas, intermediados por lã de vidro e ar, em sua maioria, apresentam temperaturas internas um pouco menores, em média 0,3 °C, do que os mesmos fechamentos sem esse material isolante na cavidade, mostrando desempenho térmico melhor (Figuras 6.14 a 6.22, Tabela B.2).

Com exceção dos fechamentos constituídos por GEA, nas espessuras avaliadas, os outros fechamentos, simples e em multicamadas, apresentam comportamento semelhante durante o período do dia mostrado, de 08 as 22 horas. Considerando a temperatura externa máxima de 27,5 °C, no horário de 14h30, dentre os fechamentos em multicamadas, os fechamentos em PMC(75) sem LVI, PMC(75) com LVI, EPS(100) com LVI e CCA(100) com LVI proporcionam as menores temperaturas internas (29,2 °C; 28,9 °C; 29,3 °C e 29,4 °C, respectivamente). A alvenaria de tijolo cerâmico mostra desempenho térmico melhor do que a

maioria dos fechamentos, com temperatura de 29 °C no mesmo horário (Figuras 6.14 a 6.22). O pior desempenho térmico, dentre os fechamentos em multicamadas, é mostrado pelos fechamentos em PLC(12) e PLC(12) com GEA(15), ambos sem LVI, para as quais têm-se as maiores temperaturas internas, respectivamente de 30,6 °C e 30,5 °C (Tabela B.2). As altas temperaturas e a pouca variação da temperatura interna, independente dos vários fechamentos testados na sala de seminários sse4, podem ser causados pelo efeito estufa provocado pela área de vidros das janelas (10,58 m²) que ocupam as paredes orientadas para o leste (Figuras 6.14 a 6.22).

Em relação ao desempenho acústico, avaliado pelo tempo de reverberação, para a frequência considerada de 1000 Hz, observa-se que os fechamentos também não atendem ao critério de tempo de reverberação no valor de 0,5 s, destacando-se que nessa edificação também não está sendo considerada a presença de pessoas e mobiliário, obtendo-se assim valores maiores de tempo de reverberação.

Nessa edificação, de modo geral, os fechamentos intermediados por lã de vidro e ar mostram um tempo de reverberação igual ao dos fechamentos sem lã de vidro, sendo que o maior tempo de reverberação, resulta do fechamento em PMC(75) com LVI e é de 5,3 s, mostrando o pior desempenho acústico. O menor tempo de reverberação, resulta dos fechamentos em CCA(100) sem e com LVI, e é de 1,9 s, mostrando o melhor desempenho acústico (Figuras 6.14 a 6.22). O melhor desempenho térmico e acústico é proporcionado pelo fechamento em CCA(100) com LVI, que resulta $T_i = 29,4$ °C e TR = 1,9 s (Tabela B.2).

Nos gráficos mostrados nas Figuras 6.23 a 6.35, nota-se que o valor do tempo de reverberação varia pouco ao longo do dia. Nos horários de temperaturas externas mais elevadas (de 09 as 18 horas), há uma pequena diminuição em seus valores para todos os métodos de cálculo.

Observa-se que a aplicação do Método de Arau-Puchades resulta em valores mais elevados de tempo de reverberação, seguido pelo Método de Sabine. Para a frequência de 1000 Hz, a maior diferença de tempo de reverberação calculado pelo Método de Arau-Puchades e os outros métodos ocorre no fechamento cujo painel possui o maior coeficiente de absorção sonora, o CCA(100) com LVI (Figuras 6.4 e 6.26). Para esse fechamento, a diferença de tempo de reverberação calculado pelo Método de Arau-Puchades e pelo Método de Sabine é em média de 0,7 s (Tabela B.3).

A menor diferença no tempo de reverberação ocorre nos fechamentos em PMC(75) e EPS(100), ambos com LVI, e em ATC(150), que possuem coeficientes de absorção sonora

iguais e menores do que os outros materiais, na frequência de 1000 Hz (Figuras 6.4, 6.25, 6.27 e 6.35). Para esses fechamentos, a diferença de tempo de reverberação calculado pelo Método de Arau-Puchades e pelo Método de Sabine é, em média, de 0,1 s. O método que resulta os menores valores de tempos de reverberação é o de Millington, que é o mais apurado dentre os apresentados aqui, pois baseia-se no decaimento da energia sonora a cada reflexão, e pode ser aplicado independente das absorções das superfícies, se altas ou baixas (Tabela B.3).

Considerando todos os métodos e o horário de 14h30, o maior tempo de reverberação é 5,4 s, proporcionado pelos fechamentos PMC(75) com LVI e ATC(150) e obtido pelo Método de Arau-Puchades. O menor tempo de reverberação, 1,8 s, é proporcionado pelo fechamento em CCA(100) com LVI determinado pelo Método de Millington (Tabela B.3).

Observando os resultados mostrados nas Figuras 6.28 a 6.35, nota-se que os fechamentos mistos, cujas camadas internas são constituídas por PLC(10) ou por GEA(12,5) apresentam o mesmo tempo de reverberação proporcionado pelos fechamentos não mistos cujo elemento interno é o mesmo (PLC ou GEA), mostrados nas Figuras 6.23 e 6.24, confirmando que a superfície interna do fechamento de um ambiente é determinante para a reverberação local.

Nos gráficos apresentados nas Figuras 6.36 a 6.39, nas quais o tempo de reverberação está apresentado em função da frequência, para os quatro métodos indicados, o fechamento constituído por CCA(100) também proporciona os menores valores de tempo de reverberação nessa faixa de frequência. Ressalta-se que o concreto celular autoclavado (CCA) é o material que possui os maiores coeficientes de absorção sonora, na faixa de frequência de interesse que vai de 500 a 2000 Hz (Figura 6.4). Na Tabela 6.7 são indicados os valores de tempo de reverberação dos fechamentos, para 1000 Hz, observando que o menor tempo de reverberação para essa frequência (1,7 s) é proporcionado pelo fechamento em CCA(100) com LVI (Método de Millington). Também nesse estudo de caso, esse fechamento demonstra o melhor desempenho térmico e acústico, com $T_i = 29.4$ °C (Tabela B.4).

Tabela 6.7. Tempo de reverberação (TR) para 1000 Hz, sala de seminários sse4, Edifício II

Fechamento	TR Sabine	TR Millington	TR Eyring	TR Arau-
rechamento	(s)	(s)	(s)	Puchades (s)
PLC(10)-LVI(50)-ar(25)-PLC(10)	3,4	3,3	3,3	3,7
GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	3,7	3,6	3,7	3,7
PMC(75)-LVI(50)-ar(25)-PMC(75)	5,3	5,2	5,2	4,9
CCA(100)-LVI(50)-ar(25)-CCA(100)	1,9	1,7	1,8	2,1
EPS(100)-LVI(50)-ar(25)-EPS(100)	5,3	5,2	5,2	4,9
ATC(150)	5,2	5,2	5,2	4,9

6.2.5. Resultados de temperatura e tempo de reverberação, auditório, Edifício III

No Edifício III, são analisados apenas os fechamentos listados a seguir:

- PLC(10)-ar(75)-PLC(10);
- PLC(10)-LVI(50)-ar(25)-PLC(10);
- GEA(12,5)-ar(75)-GEA(12,5);
- GEA(12,5)-LVI(50)-ar(25)-GEA(12,5);
- PMC(75)-ar(75)-PMC(75);
- PMC(75)-LVI(50)-ar(25)-PMC(75);
- CCA(100)-ar(75)-CCA(100);
- CCA(100)-LVI(50)-ar(25)-CCA(100);
- EPS(100)-ar(75)-EPS(100);
- EPS(100)-LVI(50)-ar(25)-EPS(100);
- ATC(150).

Os resultados são mostrados para o auditório com três volumes diferentes: $V_1=1800 \text{ m}^3$, $V_2=3600 \text{ m}^3$ e $V_3=7200 \text{ m}^3$ (Figura 6.3).

Nas Figuras 6.40 e 6.41, 6.42 e 6.43, 6.44 e 6.45, são mostrados os resultados da evolução temporal da temperatura para o auditório nos volumes V₁, V₂ e V₃, respectivamente.

Nesse estudo de caso o tempo de reverberação é obtido apenas para as frequências de banda de oitava, para o horário de 14h30, sendo utilizado o módulo acústico do ESP-r. Nas Figuras 6.46 a 6.51, são mostrados os resultados obtidos para a evolução do tempo de reverberação em função da frequência, calculados pelos métodos de Sabine, Eyring e Millington para os painéis em multicamadas, com lã de vidro, mencionados anteriormente. Os fechamentos sem lã de vidro não estão sendo representados porque nas simulações mostram resultados similares aos dos fechamentos com lã de vidro (Tabela B.5).

O efeito do volume do auditório na variação da absorção sonora devida ao ar (4*mV*, em m²) é mostrado na Figura 6.52 para os mesmos fechamentos indicados nas Figuras 6.46 a 6.51 e para as frequências de 500 Hz, 1000 Hz e 2000 Hz.

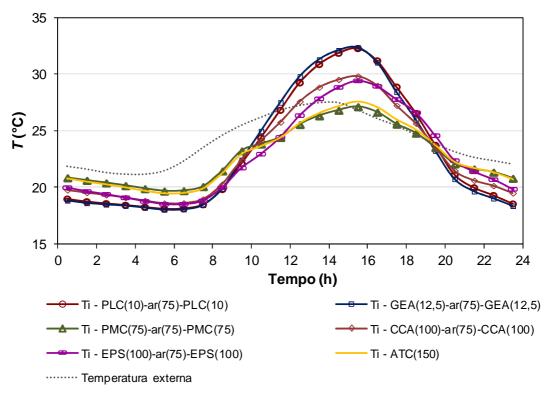


Figura 6.40 – Temperatura interna para fechamentos de painéis em multicamadas, sem lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC – auditório – V₁

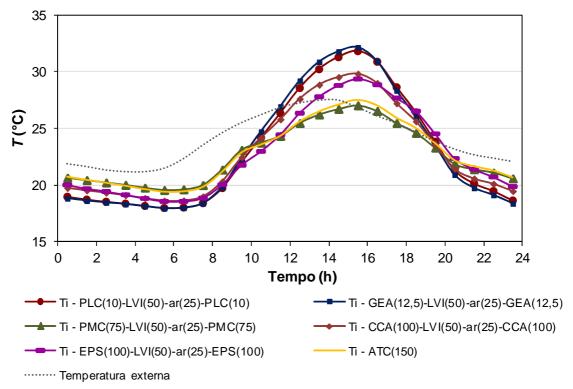


Figura 6.41 – Temperatura interna para fechamentos de painéis em multicamadas, com lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC – auditório – V₁

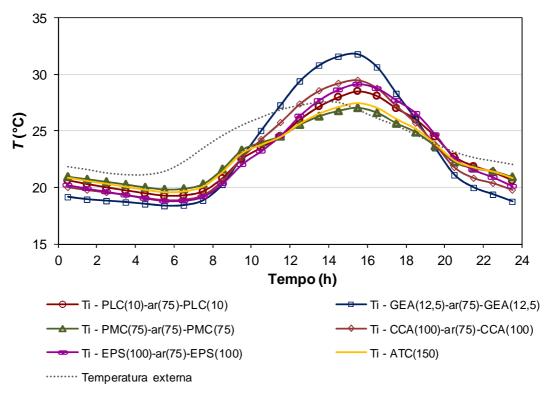


Figura 6.42 – Temperatura interna para fechamentos de painéis em multicamadas, sem lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC – auditório – V₂



Figura 6.43 – Temperatura interna para fechamentos de painéis em multicamadas, com lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC – auditório – V₂

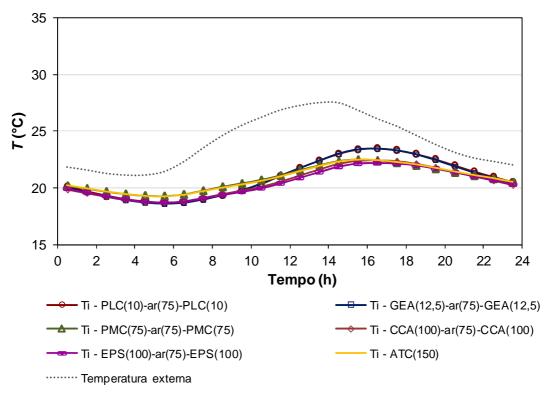


Figura 6.44 – Temperatura interna para fechamentos de painéis em multicamadas, sem lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC – auditório – V₃

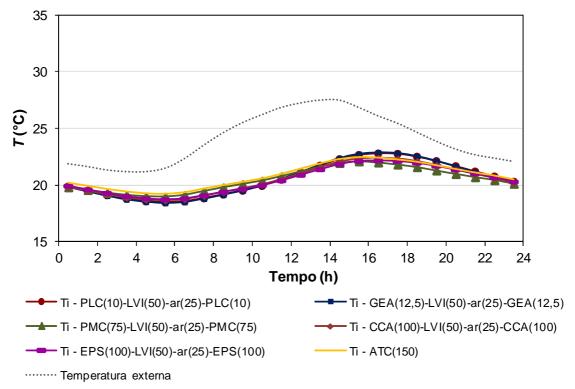


Figura 6.45 – Temperatura interna para fechamentos de painéis em multicamadas, com lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC – auditório – V₃

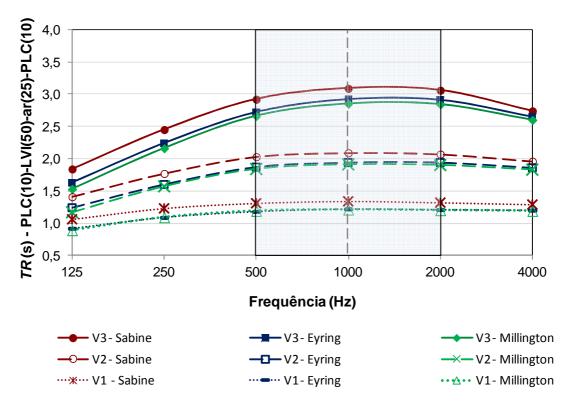


Figura 6.46 – Tempo de reverberação em função da frequência pelos métodos de Sabine, Eyring e Millington para fechamento de painéis em multicamadas de placa cimentícia com lã de vidro – auditório

Figura 6.47 – Tempo de reverberação em função da frequência pelos métodos de Sabine, Eyring e Millington para fechamento de painéis em multicamadas de gesso acartonado com lã de vidro – auditório

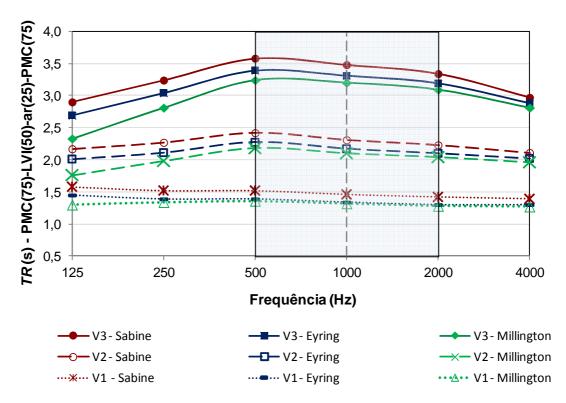


Figura 6.48 – Tempo de reverberação em função da frequência pelos métodos de Sabine, Eyring e Millington para fechamento de painéis em multicamadas de pré-moldado de concreto com lã de vidro – auditório

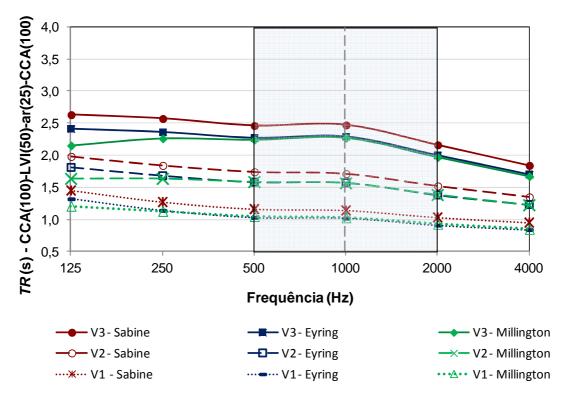


Figura 6.49 – Tempo de reverberação em função da frequência pelos métodos de Sabine, Eyring e Millington para fechamento de painéis em multicamadas de concreto celular autoclavado com lã de vidro – auditório

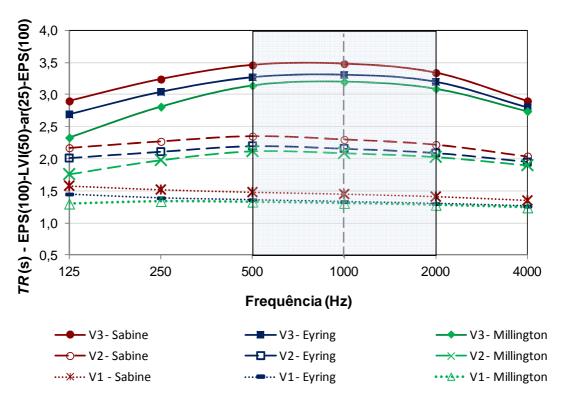


Figura 6.50 – Tempo de reverberação em função da frequência pelos métodos de Sabine, Eyring e Millington para fechamento de painéis em multicamadas de poliestireno expandido com lã de vidro – auditório

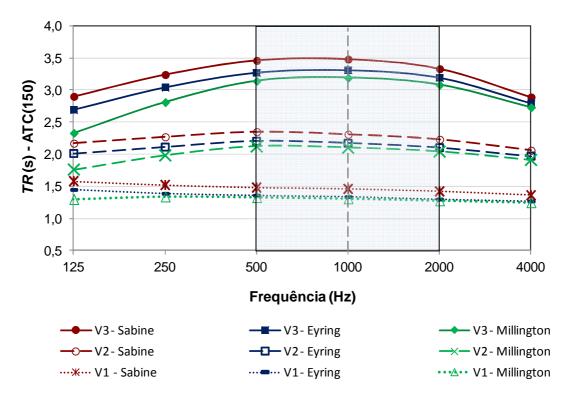


Figura 6.51 – Tempo de reverberação em função da frequência pelos métodos de Sabine, Eyring e Millington para fechamento de alvenaria – auditório

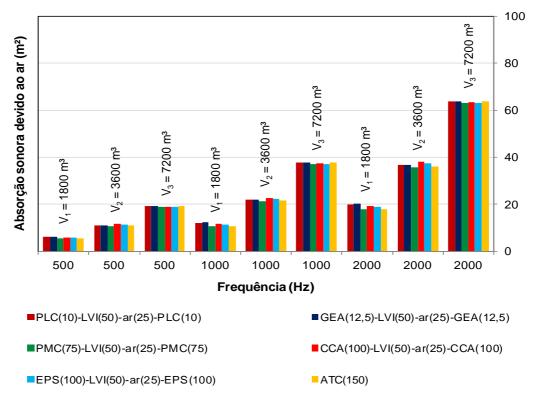


Figura 6.52 – Absorção sonora devido ao ar para as frequências de 500 Hz, 1000 Hz e 2000 Hz para os fechamentos de painéis em multicamadas, com lã de vidro, de placa cimentícia, gesso acartonado, pré-moldado de concreto, concreto celular autoclavado, poliestireno expandido e de alvenaria, para V₁, V₂ e V₃

6.2.6. Análise dos resultados de temperatura e tempo de reverberação, auditório, Edifício III

Em relação ao desempenho térmico, para o auditório do Edifício III e zona bioclimática três, os fechamentos em multicamadas, intermediados por lã de vidro e ar, proporcionam temperaturas internas menores, em média 0,2 °C, do que os mesmos fechamentos sem esse material isolante na cavidade, mostrando desempenho térmico melhor (Figuras 6.40 a 6.45, Tabela B.5).

Para V_1 e V_2 , nos horários de temperaturas externas mais elevadas, exceto para fechamentos constituídos por PMC(75) com LVI e por ATC(150), a temperatura interna é mais elevada do que a temperatura externa, causando desconforto térmico. A temperatura interna mais elevada e a menor umidade relativa ocorrem com o fechamento em GEA(12,5) sem lã de vidro, com valores de 32,1 °C e 44,4 %, respectivamente, em V_1 . A menor temperatura interna e a maior umidade relativa ocorrem com o fechamento em PMC(75) com LVI, tanto para V_1 quanto para V_2 , com valores de 26,7 °C e 60,6 %, respectivamente (Figuras 6.40 a 6.43, Tabela B.5).

Para V_3 , os fechamentos analisados atendem ao critério mínimo de desempenho térmico, $T_{i,max} \leq T_{e,max}$, obtendo-se as menores temperaturas e as maiores umidades relativas. A menor temperatura e a maior umidade, no horário de 14h30, são proporcionadas quando se utiliza o fechamento constituído por EPS(100) com LVI, e seus valores são 21,8 °C e 81,2 %, respectivamente (Figuras 6.44 e 6.45, Tabela B.5).

Na Tabela 6.8 estão mostrados os valores de temperatura e umidade relativa encontrados para o auditório nos volumes V_1 , V_2 e V_3 , considerando o horário de 14h30, quando a temperatura externa é 27,5 °C e a umidade do ar é 57,5 % (Tabela B.5).

Tabela 6.8. Temperaturas e umidades relativas internas (T_i e Φ_i) resultantes nos três volumes do auditório, Edifício III, para temperatura e umidade relativa externas (T_e e Φ_e) iguais a 27,5 °C e 57,5 %, respectivamente

Eachamanta	V	<i>Y</i> ₁	V	<i>Y</i> ₂	V_3		
Fechamento	T_i (°C)	$\Phi_i\left(\% ight)$	T_i (°C)	$\Phi_i\left(\% ight)$	T_i (°C)	Φ_i (%)	
PLC(10)-ar(75)-PLC(10)	31,9	45,1	28,0	56,3	23,0	75,7	
PLC(10)-LVI(50)-ar(25)-PLC(10)	31,3	46,6	27,8	57,1	22,3	79,0	
GEA(12,5)-ar(75)-GEA(12,5)	32,1	44,4	31,6	45,8	23,0	75,6	
GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	31,8	45,3	31,3	46,6	22,4	78,6	
PMC(75)-ar(75)-PMC(75)	26,8	60,2	26,8	60,3	22,3	78,6	
PMC(75)-LVI(50)-ar(25)-PMC(75)	26,7	60,6	26,7	60,6	21,9	80,6	
CCA(100)-ar(75)-CCA(100)	29,5	51,4	29,2	52,4	22,1	79,8	
CCA(100)-LVI(50)-ar(25)-CCA(100)	29,5	51,5	29,2	52,4	22,0	80,1	
EPS(100)-ar(75)-EPS(100)	28,8	53,6	28,6	54,3	21,8	81,1	
EPS(100)-LVI(50)-ar(25)-EPS(100)	28,8	53,8	28,6	54,5	21,8	81,2	
ATC(150)	27,1	59,1	27,1	59,3	22,3	78,8	

Analisando a resposta térmica do auditório para os volumes V_1 , V_2 e V_3 , observa-se que aumentando o volume do ambiente, para as mesmas condições climáticas, físicas e térmicas, as temperaturas internas tendem a abaixar e as umidades relativas tendem a aumentar.

Em relação ao desempenho acústico, avaliado pelo tempo de reverberação, para a faixa de frequência de 125 a 4000 Hz, a maioria dos fechamentos atende ao critério de tempo de reverberação no valor médio de 1,0 s, indicado para a edificação, conforme Figuras 2.4 e 2.5. Destaca-se que nessa edificação considera-se a existência das cadeiras no auditório, mas não se considera a presença de pessoas (Figuras 6.46 a 6.51).

Os resultados de tempo de reverberação em função da frequência mostram que os valores mais baixos de tempo de reverberação encontram-se nos resultados da aplicação dos métodos de Millington e Eyring e que o ambiente de menor volume (V_1) proporciona tempos de

reverberação menores. Considerando a faixa de frequência avaliada, entre 125 e 4000 Hz, o menor valor de tempo de reverberação, 0,8 s, é obtido quando se utilizam os fechamentos em GEA(12,5) com LVI, para 125 Hz e Método de Millington, e CCA(100) com LVI(50), para 4000 Hz e Método de Eyring, no volume V₁ (Tabela B.6).

Para a faixa de frequência entre 500 a 2000 Hz, os fechamentos em PLC(10), GEA(12,5) e CCA(100), todos com LVI, proporcionam os menores valores de tempo de reverberação, também no volume V₁ (Figuras 6.46 a 6.51; Tabela 6.9).

Tabela 6.9. Menores valores de tempo de reverberação, para o auditório, considerando a temperatura e umidade relativas externas (T_e e Φ_e) iguais a 27,5 °C e 57,5 %, respectivamente

	Frequência (Hz)												
Método		500			1000		2000						
	V_1	V_2	V_3	V_1	V_2	V_3	V_1	V_2	V_3				
		TR (s) - PLC(10))-LVI(50)	-ar(25)-PI	C(10)							
Sabine	1,31	2,03	2,92	1,34	2,09	3,09	1,32	2,07	3,06				
Eyring	1,18	1,87	2,72	1,22	1,94	2,92	1,21	1,93	2,91				
Millington	1,19	1,84	2,66	1,21	1,91	2,85	1,20	1,90	2,84				
TR (s) - GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)													
Sabine	1,29	2,98	2,84	1,36	2,14	3,17	1,32	2,07	3,05				
Eyring	1,16	1,82	2,65	1,24	1,99	3,01	1,21	1,94	2,91				
Millington	1,16	1,80	2,60	1,23	1,95	2,93	1,20	1,90	2,83				
		TR (s) - 0	CCA(100))-LVI(50)	-ar(25)-C	CA(100)							
Sabine	1,16	1,74	2,46	1,14	1,71	2,47	1,03	1,52	2,16				
Eyring	1,03	1,58	2,27	1,02	1,57	2,29	0,91	1,38	2,00				
Millington	1,05	1,58	2,24	1,03	1,56	2,27	0,93	1,38	1,97				

Quanto ao efeito do volume do auditório na variação da absorção sonora devido ao ar, dada pela Equação 2.13, além do volume de ar, obviamente, a frequência é fator preponderante nessa questão. Quanto maior o volume do recinto, maior é o tempo de reverberação (Tabela 6.9). Quanto mais alta a frequência do som, maior é a absorção sonora devida ao ar, tendendo a diminuir o tempo de reverberação (Figura 6.52). Para frequências abaixo de 1000 Hz e volumes menores, a absorção sonora devida ao ar torna-se insignificante para qualquer temperatura e umidade. À medida que se aumenta a frequência em uma oitava, para um mesmo volume de ar, essa absorção sonora praticamente dobra, pois ocorre o mesmo com o coeficiente de absorção sonora (*m*) (Figura 6.52; Tabela 6.10, Tabela B.7).

As pequenas variações nos valores de absorção sonora devido ao ar, observadas nos vários fechamentos, considerando o mesmo volume e frequência, devem-se às curtas variações de temperaturas internas detectadas no recinto de um fechamento para outro (Figura 6.52).

Tabela 6.10. Coeficientes de absorção sonora do ar (m) x 1000 (m⁻¹), para V₁, V₂ e V₃

Volume do		Frequência (Hz)													
Edifício III	125	250	500	1000	2000	4000									
$V_1 = 1800 \text{ m}^3$	0,0833	0,2917	0,8472	1,6806	2,7778	5,7778									
$V_2 = 3600 \text{ m}^3$	0,0764	0,2708	0,7708	1,5208	2,5417	5,3958									
$V_3 = 7200 \text{ m}^3$	0,0660	0,2361	0,6632	1,3056	2,2153	4,8438									

Para o maior volume, V_3 , nas altas frequências, observam-se coeficientes de absorção sonora menores e tempos de reverberação mais elevados do que em V_1 e V_2 , o que pode comprometer o entendimento do som nessas frequências (Tabelas 6.9 e 6.10). Observa-se também que, quanto mais alta a frequência do som, maior é a absorção sonora devida ao ar, tendendo a diminuir o tempo de reverberação.

Nas Tabelas 6.11 e 6.12, tem-se uma comparação entre a absorção sonora do ar e a área total equivalente do auditório para as frequências de 1000 Hz e 4000 Hz, respectivamente. A área total equivalente é igual à área de absorção equivalente do fechamento no interior do ambiente somada à absorção sonora do ar, conforme Equação 2.20.

A relação entre os volumes do auditório V_3 para V_2 e entre V_2 e V_1 é de 2:1. No entanto, a relação entre a absorção sonora do ar e a área total equivalente é em média de 1,4:1 (entre V_3 e V_2 e entre V_2 e V_1). Isso ocorre porque, dobrando-se o volume do ambiente, dobra-se também o volume de ar, mas eleva-se também a área de absorção equivalente do fechamento no interior dos ambientes da edificação (Tabelas 6.11 e 6.12).

Tabela 6.11. Comparação entre a absorção sonora do ar e a área total de absorção dos fechamentos do auditório para a frequência de 1000 Hz

		V1			V2			V3	
Fechamento	A_f^{fech} (m²)	A_f^{ar} (m²)	A_f^{ar}/A_f^{fech} (%)	A_f^{fech} (m²)	A_f^{ar} (m²)	A_f^{ar}/A_f^{fech} (%)	A_f^{fech} (m²)	A_f^{ar} (m²)	$A_f^{ar}/A_f^{fech} \ (\%)$
PLC(10)-LVI(50)-ar(25)-PLC(10)	204,6	12,1	6	255,9	21,9	8	337,4	37,6	10
GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	200,5	12,2	6	249,3	21,9	8	326,9	37,7	10
PMC(75)-LVI(50)-ar(25)-PMC(75)	188,1	10,6	5	229,6	21,3	8	295,6	37,2	11
CCA(100)-LVI(50)-ar(25)-CCA(100)	241,9	11,5	5	315,1	22,8	7	431,5	37,3	8
EPS(100)-LVI(50)-ar(25)-EPS(100)	188,1	11,3	6	229,6	22,4	9	295,6	37,1	11
ATC(150)	188,1	10,8	5	229,6	21,5	9	295,6	37,6	11

Tabela 6.12. Comparação entre a absorção sonora do ar e a área total de absorção dos fechamentos do auditório para a frequência de 4000 Hz

		V1			V2		V3			
Fechamento	A_f^{fech} (m²)	A_f^{ar} (m²)	A_f^{ar}/A_f^{fech} (%)	A_f^{fech} (m²)	A_f^{ar} (m²)	A_f^{ar}/A_f^{fech} (%)	A_f^{fech} (m²)	A_f^{ar} (m²)	A_f^{ar} / A_f^{fech} (%)	
PLC(10)-LVI(50)-ar(25)-PLC(10)	182,8	41,6	19	218,3	77,7	26	282,9	139,5	33	
GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	182,8	42,0	19	218,3	77,7	26	282,9	139,8	33	
PMC(75)-LVI(50)-ar(25)-PMC(75)	170,4	38,1	18	198,5	76,2	28	251,6	138,6	36	
CCA(100)-LVI(50)-ar(25)-CCA(100)	265,6	40,2	13	349,8	80,0	19	491,9	138,9	22	
EPS(100)-LVI(50)-ar(25)-EPS(100)	174,5	39,6	18	205,1	79,0	28	262,0	138,3	35	
ATC(150)	174,5	38,4	18	205,1	76,7	27	262,0	139,6	35	

Com o método proposto é possível comparar o desempenho térmico e acústico de uma edificação, pois a variação temporal da temperatura e da umidade relativa obtida no interior de seus ambientes torna-se parte do cálculo do tempo de reverberação, que é um parâmetro relevante para o cálculo do desempenho acústico de um ambiente.

A avaliação de desempenho é então realizada de maneira integrada e os resultados obtidos possibilitam uma avaliação antecipada dos sistemas de fechamento em termos de desempenho térmico e acústico.

7. ESTIMATIVA DA PERDA NA TRANSMISSÃO SONORA NOS SISTEMAS DE FECHAMENTO SIMPLES E EM MULTICAMADAS

Nesse capítulo é feita a estimativa da perda na transmissão sonora que ocorre através dos fechamentos simples e em multicamadas, conforme apresentado no Capítulo 2.

Nos painéis simples, a perda na transmissão sonora, em função da frequência, é estimada pela Lei da Massa e pelo método gráfico, determinando-se as coordenadas dos pontos A e B, conforme mostrado na Figura 2.13. Nos painéis em multicamadas, a perda na transmissão sonora, em função da frequência, é estimada aplicando-se o método gráfico simplificado, conforme mostrado na Figura 2.20. Os resultados são analisados com o tempo de reverberação.

7.1. Resultados de perda na transmissão sonora

O nome, a espessura (h), a massa específica superficial (M), a rigidez à flexão (B_s) e a frequência crítica (f_c) dos painéis de fechamento simples e da alvenaria de tijolo cerâmico, tomados como referência para a estimativa da perda na transmissão sonora, encontram-se na Tabela 4.3. Na Tabela 4.4, para os painéis em multicamadas, estão, além dessas características, a menor frequência de ressonância do conjunto massa-ar-massa (f_0) e os fatores de amortecimento interno dos dois painéis (η_1 e η_2).

Na Tabela 7.1 são mostrados os valores das perdas na transmissão sonora dos painéis simples, calculados pela Lei da Massa, para as frequências de banda de oitava compreendidas entre 125 e 4000 Hz. Na Tabela 7.2 estão os valores das coordenadas dos pontos A e B, para o traçado das curvas de perdas na transmissão sonora, calculadas pelo método gráfico, e os valores das quedas das perdas na transmissão sonora dos painéis simples.

As abscissas (X_A; X_B) correspondem às frequências de início e de final da queda da perda na transmissão sonora, respectivamente, e as ordenadas (Y_A; Y_B) são as correspondentes perdas na transmissão sonoras dos pontos A e B.

Para a estimativa da perda na transmissão sonora de painéis em multicamadas, tomam-se as dimensões b_c (espaçamento entre caibros) e e (espaçamento entre parafusos) iguais a 0,60 m (Figuras 2.18 e 2.19).

Os resultados para o traçado das curvas da perda na transmissão sonora dos painéis em multicamadas, que correspondem às ordenadas dos pontos das curvas $f \times PT$, estão mostrados na Tabela 7.3, para as fixações linha-linha (LL), linha-pontual (LP) e pontual-pontual (PP). Na Tabela 7.4 são mostradas as coordenadas calculadas para os pontos A, B e C e a abscissa do ponto D, bem como a ordenada do ponto D, determinada graficamente.

Tabela 7.1. Perdas na transmissão sonora, calculadas pela Lei da Massa para as frequências de banda de oitava entre 125 e 4000 Hz

Frequência (Hz)	125	250	500	1000	2000	4000
Material			PT (Lei da]	Massa) (dB)		
PLC(10)	17	23	29	35	41	47
PLC(12)	19	25	31	37	43	49
PLC(100)	37	43	49	55	61	67
GEA(12,5)	14	20	26	32	38	44
GEA(15)	16	22	28	34	40	46
GEA(100)	32	38	44	50	56	62
PMC(75)	40	46	52	58	64	70
PMC(100)	42	49	54	60	66	72
PMC(225)	49	56	61	67	73	79
CCA(100)	29	35	41	47	53	59
CCA(275)	37	44	49	55	61	67
EPS(100)	34	41	46	52	58	64
EPS(275)	35	42	47	53	59	66
ATC(150)	44	50	56	62	68	74

Tabela 7.2. Perdas na transmissão sonora dos pontos A e B, obtidas via método gráfico, e valores das quedas das perdas na transmissão sonora dos painéis simples (Figura 2.13)

Material	X _A	X_{B}	$Y_A = PT_A$	$Y_B = PT_B$	Queda da PT
Material	(Hz)	(Hz)	(dB)	(dB)	(dB)
PLC(10)	10579	21158	55	41	14
PLC(12)	8816	17631	55	41	14
PLC(100)	1058	2116	55	41	14
GEA(12,5)	1557	3113	35	22	13
GEA(15)	1297	2595	35	22	13
GEA(100)	195	389	35	22	13
PMC(75)	137	274	40	32	08
PMC(100)	103	205	40	32	08
PMC(225)	46	91	40	32	08
CCA(100)	195	390	32	23	09
CCA(275)	71	142	32	23	09
EPS(100)	6335	12670	68	54	14
EPS(275)	1491	2981	56	42	14
ATC(150)	73	146	38	24	14

Os resultados de perda na transmissão sonora estão representados também graficamente, para as frequências de banda de oitava compreendidas entre 125 e 4000 Hz, nas Figuras 7.1 a 7.24,

para os painéis simples, aplicando-se a Lei da Massa e o método gráfico, e para os painéis em multicamadas, aplicando-se o método gráfico simplificado, para a fixação LL.

Nas mesmas figuras, estão também representados os resultados do tempo de reverberação em função da frequência, pelo método de Sabine, no horário de 14h30, para o dormitório do Edifício I (Figuras 7.1 a 7.9); para a sala de seminários sse4 do Edifício II (Figuras 7.10 a 7.18); e para o auditório do Edifício III, de maneira simplificada, considerando-se os volumes V_1 (Figuras 7.19 e 7.20), V_2 (Figuras 7.21 e 7.22) e V_3 (Figuras 7.23 e 7.24).

Nas Figuras 7.25 a 7.33, estão representados os resultados de perda na transmissão sonora em função da frequência obtidos para os três tipos de fixação, LL, LP e PP, dos painéis em multicamadas.

Tabela 7.3. Perda na transmissão sonora (dB) para os pontos A, B e C (Figura 2.20)

Tipo de fixação →	LL,			L	L			L	P			F	P	
Fechamento em multicamadas	PT_A (dB)	PT_{BI} (dB)	PT_{B2} (dB)	PT_{B} (dB)	$PT_c (f_{c2} = fc_I)$ (dB)	$PT_c (fc_2 \neq fc_I)$ (dB)	PT_{B2} (dB)	PT_{B} (dB)	$PT_c (f_{c2} = fc_I)$ (dB)	$PT_c (fc_2 \neq fc_I)$ (dB)	PT_{B2} (dB)	PT_{B} (dB)	$PT_c (f_{c2} = fc_I)$ (dB)	$PT_c (fc_2 \neq fc_1)$ (dB)
PLC(10)-ar(75)-PLC(10)	22	61	-	61	32	-	-	61	32	-	-	61	32	-
PLC(10)-LVI(50)-ar(25)-PLC(10)	22	61	78	82	54	-	88	88	59	-	88	88	59	-
PLC(12)-ar(90)-PLC(12)	22	61	-	61	32	-	-	61	32	-	-	61	32	-
PLC(12)-LVI(50)-ar(40)-PLC(12)	22	61	77	81	53	-	85	85	57	-	85	85	57	-
GEA(12,5)-ar(75)-GEA(12,5)	20	41	-	41	14	-	-	41	14	-	-	41	14	-
GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	20	41	50	54	27	-	52	52	25	-	52	52	25	-
GEA(15)-ar(90)-GEA(15)	20	41	-	41	14	-	-	41	14	-	-	41	14	-
GEA(15)-LVI(50)-ar(40)-GEA(15)	20	41	49	53	26	-	50	50	23	-	50	50	-	-
PMC(75)-ar(75)-PMC(75)	33	46	-	46	26	-	-	46	26	-	-	46	26	-
PMC(75)-LVI(50)-ar(25)-PMC(75)	33	46	44	46	26	-	26	46	26	-	26	46	26	-
CCA(100)-ar(75)-CCA(100)	27	38	-	38	16	-	-	38	16	-	-	38	16	-
CCA(100)-LVI(50)-ar(25)-CCA(100)	27	38	38	38	16	-	25	38	16	-	25	38	16	-
EPS(100)-ar(75)-EPS(100)	30	74	-	74	45	-	-	74	45	-	-	74	45	-
EPS(100)-LVI(50)-ar(25)-EPS(100)	30	74	89	93	64	-	89	89	60	-	89	89	60	-
PLC(10)-ar(75)-GEA(12,5)	21	43	-	43	-	26	-	43	-	26	-	43	-	26
PLC(10)-LVI(50)-ar(25)-GEA(12,5)	21	43	73	77	-	60	86	86	-	69	81	86	-	64
PLC(12)-ar(90)-GEA(15)	21	43	-	43	-	26	-	43	-	26	-	43	-	26
PLC(12)-LVI(50)-ar(40)-GEA(15)	21	43	72	76	-	59	83	83	-	66	79	83	-	62
PMC(75)-ar(75)-PLC(10)	36	40	-	40	-	23	-	40	-	23	-	40	-	23
PMC(75)-LVI(50)-ar(25)-PLC(10)	36	40	95	99	-	82	101	101	-	84	95	101	-	78
PMC(75)-ar(75)-GEA(12,5)	37	40	-	40	-	24	-	40	-	24	-	40	-	24
PMC(75)-LVI(50)-ar(25)-GEA(12,5)	37	40	70	74	-	58	68	68	-	52	62	68	-	46
CCA(100)-ar(75)-PLC(10)	27	34	-	34	-	17	-	34	-	17	-	34	-	17
CCA(100)-LVI(50)-ar(25)-PLC(10)	27	34	84	88	-	71	94	94	-	77	88	94	-	71
CCA(100)-ar(75)-GEA(12,5)	28	33	-	33	-	17	-	33	-	17	-	33	-	17
CCA(100)-LVI(50)-ar(25)-GEA(12,5)	28	33	59	63	-	47	61	61	-	45	55	61	-	39
EPS(100)-ar(75)-PLC(10)	31	69	-	69	-	52	-	69	-	52	-	69	-	52
EPS(100)-LVI(50)-ar(25)-PLC(10)	31	69	90	94	-	77	98	98	-	81	92	98	-	75
EPS(100)-ar(75)-GEA(12,5)	33	56	-	56	-	39	-	56	-	39	-	56	-	39
EPS(100)-LVI(50)-ar(25)-GEA(12,5)	33	56	78	82	-	65	77	77	_	60	82	77	-	65

Tabela 7.4. Coordenadas dos pontos A, B e C e abscissa do ponto D calculadas, e ordenada do ponto D determinada graficamente

Tipo de fixação →		I	L, Li	P, PP			L	L	L	P	P	P
Fechamento em multicamadas	$X_A (ou fo) (Hz)$	$X_{B} (ou fc_{2}/2) (Hz)$	$\mathbf{Y}_{\mathrm{A}}\left(\mathrm{ou}\;PT_{\mathrm{A}}\right)\left(\mathrm{d}\mathbf{B}\right)$	$X_{\rm C}$ (ou $fc/2$) (Hz)	$X_D (ou 55/d) (Hz)$	$\mathbf{Y}_{\mathrm{D}}\left(\mathrm{ou}\;PT_{D}\right)\left(\mathrm{dB}\right)$	Y_{B} (ou PT_{B}) (dB)	${ m Y_C}$ (ou PT_C) (dB)	Y_{B} (ou PT_{B}) (dB)	${ m Y_C} \left({{ m ou}} \; PT_C ight) \left({{ m dB}} ight)$	Y_{B} (ou PT_{B}) (dB)	${ m Y_C}$ (ou PT_C) (dB)
PLC(10)-ar(75)-PLC(10)	114	10579	22	21158	733	69	61	32	61	32	61	32
PLC(10)-LVI(50)-ar(25)-PLC(10)	114	10579	22	21158	733	69	82	54	88	59	88	59
PLC(12)-ar(90)-PLC(12)	95	8816	22	17631	611	69	61	32	61	32	61	32
PLC(12)-LVI(50)-ar(40)-PLC(12)	95	8816	22	17631	611	69	81	53	85	57	85	57
GEA(12,5)-ar(75)-GEA(12,5)	136	1557	20	3113	733	63	41	14	41	14	41	14
GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	136	1557	20	3113	733	63	54	27	52	25	52	25
GEA(15)-ar(90)-GEA(15)	113	1297	20	2595	611	63	41	14	41	14	41	14
GEA(15)-LVI(50)-ar(40)-GEA(15)	113	1297	20	2595	611	63	53	26	50	23	50	23
PMC(75)-ar(75)-PMC(75)	31	137	33	274	733	114	46	26	46	26	46	26
PMC(75)-LVI(50)-ar(25)-PMC(75)	31	137	33	274	733	114	46	26	46	26	46	26
CCA(100)-ar(75)-CCA(100)	59	195	27	390	733	91	38	16	38	16	38	16
CCA(100)-LVI(50)-ar(25)-CCA(100)	59	195	27	390	733	91	38	16	38	16	38	16
EPS(100)-ar(75)-EPS(100)	42	6335	30	12670	733	103	74	45	74	45	74	45
EPS(100)-LVI(50)-ar(25)-EPS(100)	42	6335	30	12670	733	103	93	64	89	60	89	60
PLC(10)-ar(75)-GEA(12,5)	125	10579	21	21158	733	67	43	26	43	26	43	26
PLC(10)-LVI(50)-ar(25)-GEA(12,5)	125	10579	21	21158	733	67	77	60	86	69	81	64
PLC(12)-ar(90)-GEA(15)	105	8816	21	17631	611	67	43	26	43	26	43	26
PLC(12)-LVI(50)-ar(40)-GEA(15)	105	8816	21	17631	611	67	76	59	83	66	79	62
PMC(75)-ar(75)-PLC(10)	84	10579	36	21158	733	93	40	23	40	23	40	23
PMC(75)-LVI(50)-ar(25)-PLC(10)	84	10579	36	21158	733	93	99	82	101	84	95	78
PMC(75)-ar(75)-GEA(12,5)	99	1557	37	3113	733	90	40	24	40	24	40	24
PMC(75)-LVI(50)-ar(25)-GEA(12,5)	99	1557	37	3113	733	90	74	58	68	52	62	46
CCA(100)-ar(75)-PLC(10)	91	10579	27	21158	733	82	34	17	34	17	34	17
CCA(100)-LVI(50)-ar(25)-PLC(10)	91	10579	27	21158	733	82	88	71	94	77	88	71
CCA(100)-ar(75)-GEA(12,5)	105	1557	28	3113	733	79	33	17	33	17	33	17
CCA(100)-LVI(50)-ar(25)-GEA(12,5)	105	1557	28	3113	733	79	63	47	61	45	55	39
EPS(100)-ar(75)-PLC(10)	86	10579	31	21158	733	87	69	52	69	52	69	52
EPS(100)-LVI(50)-ar(25)-PLC(10)	86	10579	31	21158	733	87	94	77	98	81	92	75
EPS(100)-ar(75)-GEA(12,5)	101	6335	33	12670	733	85	56	39	56	39	56	39
EPS(100)-LVI(50)-ar(25)-GEA(12,5)	101	6335	33	12670	733	85	82	65	77	60	82	65

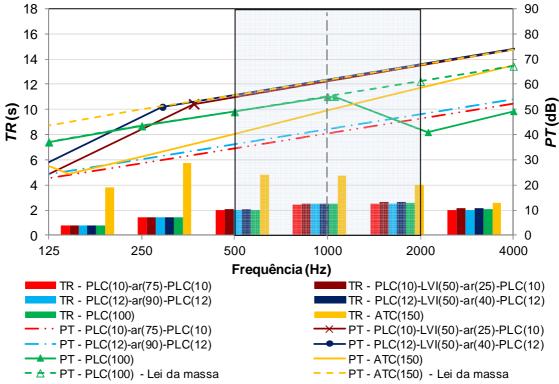


Figura 7.1 – Tempo de reverberação (dormitório) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de placa cimentícia e de alvenaria

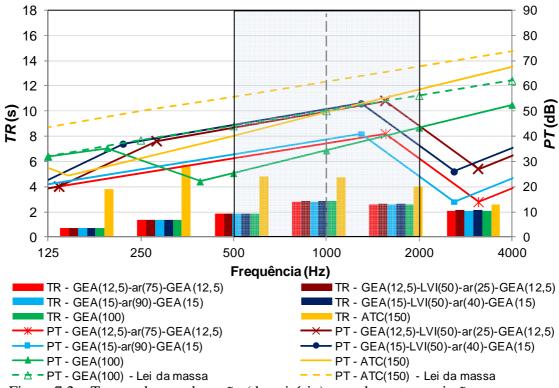


Figura 7.2 – Tempo de reverberação (dormitório) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de gesso acartonado e de alvenaria

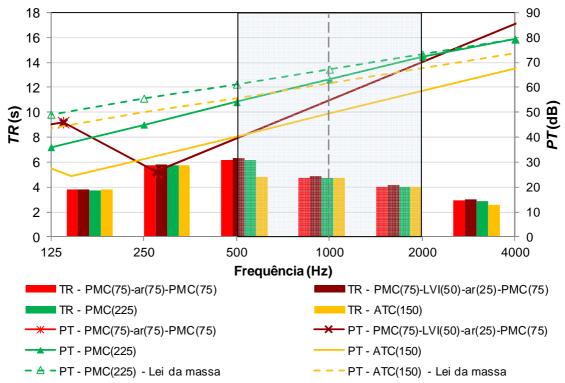


Figura 7.3 – Tempo de reverberação (dormitório) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de pré-moldado de concreto e de alvenaria

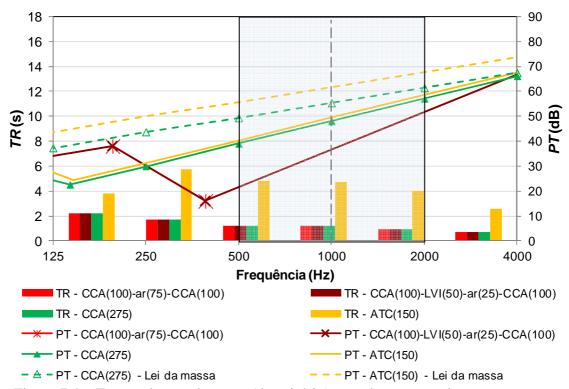


Figura 7.4 – Tempo de reverberação (dormitório) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de concreto celular autoclavado e de alvenaria

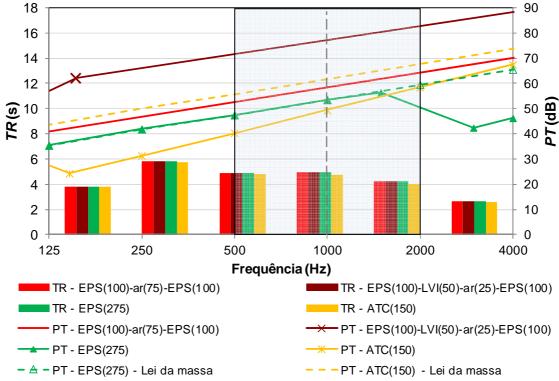


Figura 7.5 – Tempo de reverberação (dormitório) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de poliestireno expandido e de alvenaria

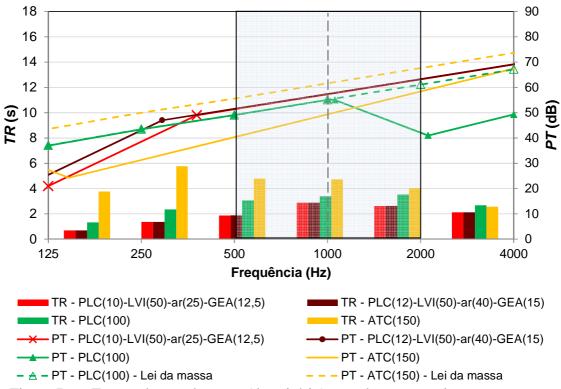


Figura 7.6 – Tempo de reverberação (dormitório) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de placa cimentícia, com gesso acartonado, e de alvenaria

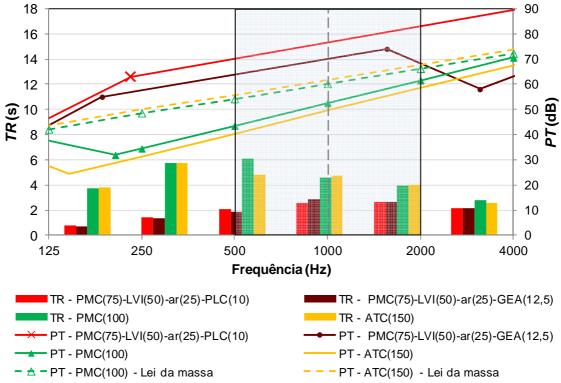


Figura 7.7 – Tempo de reverberação (dormitório) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de pré-moldado de concreto, com placa cimentícia e gesso acartonado, e de alvenaria

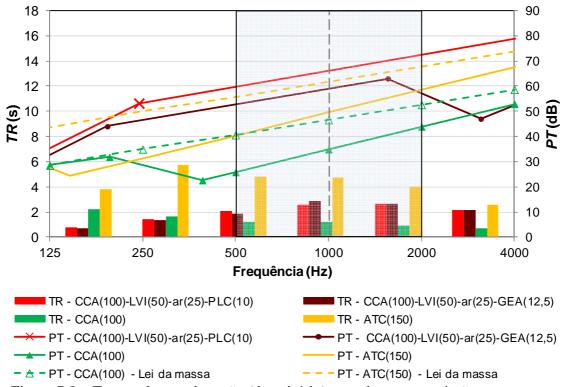


Figura 7.8 – Tempo de reverberação (dormitório) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de concreto celular autoclavado, com placa cimentícia e gesso acartonado, e de alvenaria

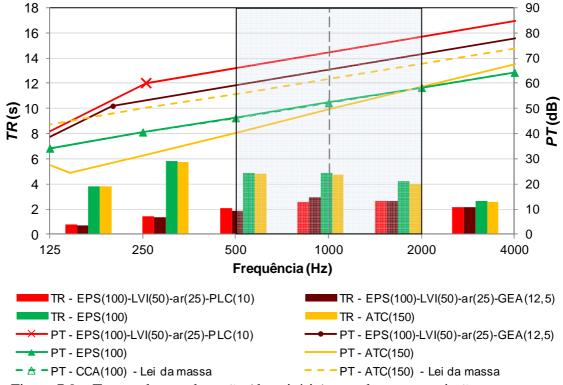


Figura 7.9 – Tempo de reverberação (dormitório) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de poliestireno expandido, com placa cimentícia e gesso acartonado, e de alvenaria

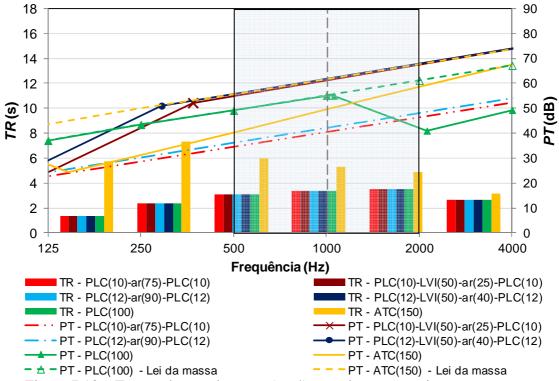


Figura 7.10 – Tempo de reverberação (sse4) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de placa cimentícia e de alvenaria

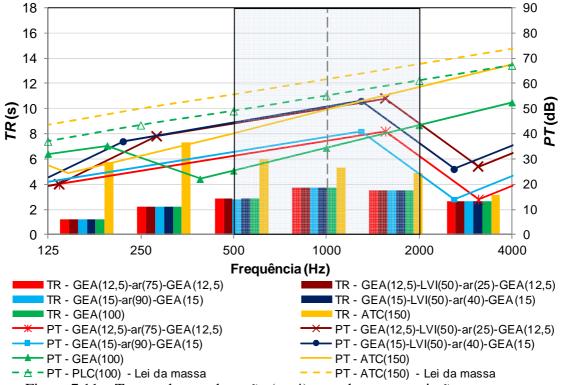


Figura 7.11 – Tempo de reverberação (sse4) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de gesso acartonado e de alvenaria

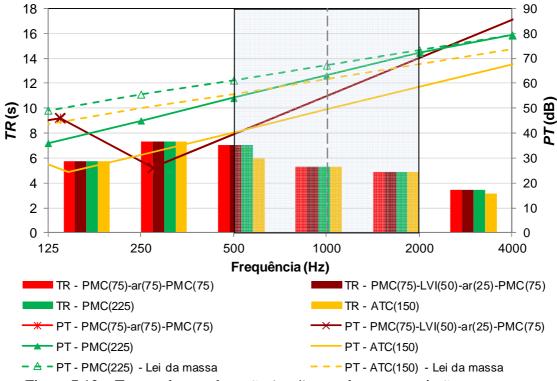


Figura 7.12 – Tempo de reverberação (sse4) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de pré-moldado de concreto e de alvenaria

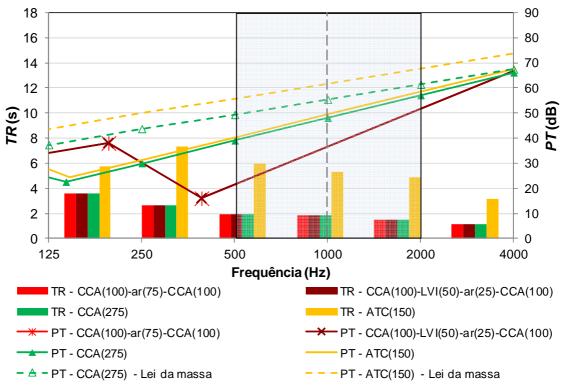


Figura 7.13 – Tempo de reverberação (sse4) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de concreto celular autoclavado e de alvenaria

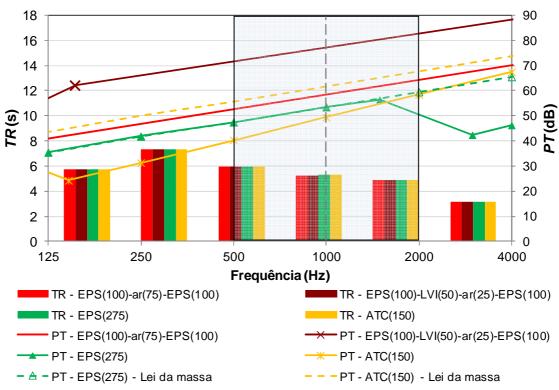


Figura 7.14 – Tempo de reverberação (sse4) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de poliestireno expandido e de alvenaria

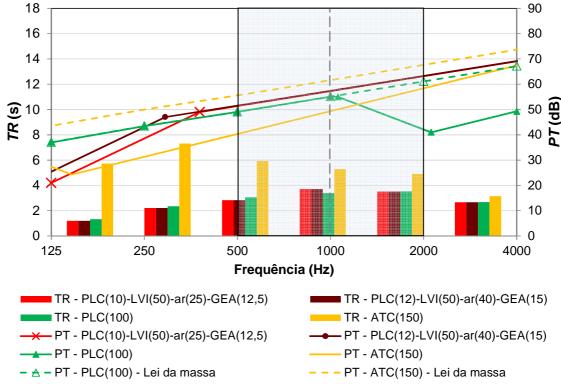


Figura 7.15 – Tempo de reverberação (sse4) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de placa cimentícia, com gesso acartonado, e de alvenaria

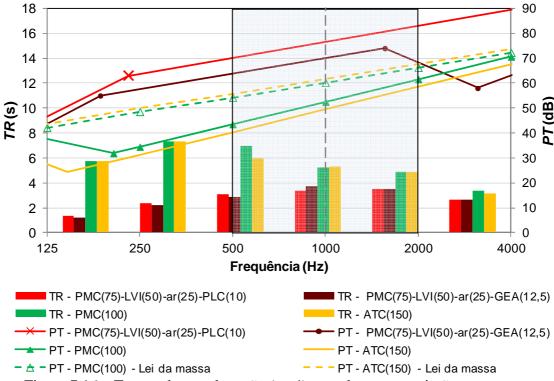


Figura 7.16 – Tempo de reverberação (sse4) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de pré-moldado de concreto, com placa cimentícia e gesso acartonado, e de alvenaria

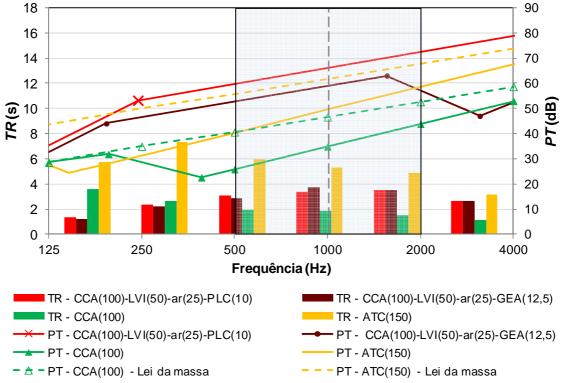


Figura 7.17 – Tempo de reverberação (sse4) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de concreto celular autoclavado, com placa cimentícia e gesso acartonado, e de alvenaria

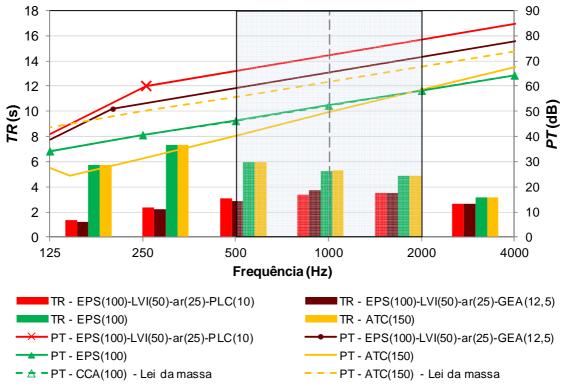


Figura 7.18 – Tempo de reverberação (sse4) e perda na transmissão sonora para fechamentos de painéis simples e em multicamadas de poliestireno expandido, com placa cimentícia e gesso acartonado, e de alvenaria

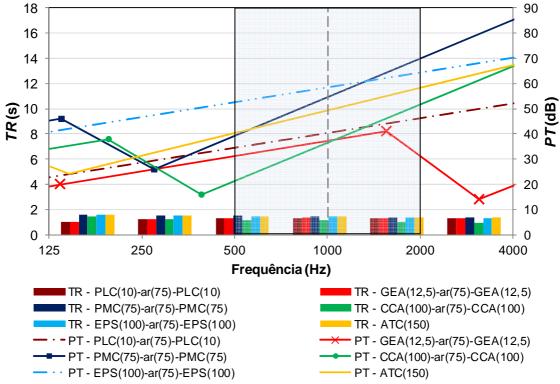


Figura 7.19 – Tempo de reverberação (auditório – V₁) e perda na transmissão sonora para fechamentos de painéis em multicamadas, sem lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC

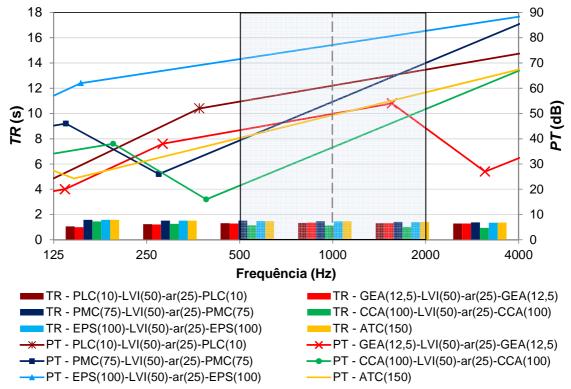


Figura 7.20 – Tempo de reverberação (auditório – V₁) e perda na transmissão sonora para fechamentos de painéis em multicamadas, com lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC

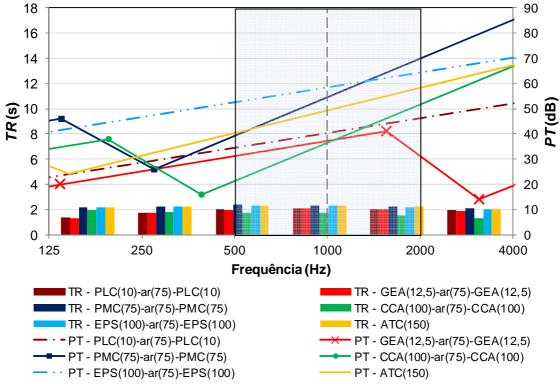


Figura 7.21 – Tempo de reverberação (auditório – V₂) e perda na transmissão sonora para fechamentos de painéis em multicamadas, sem lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC

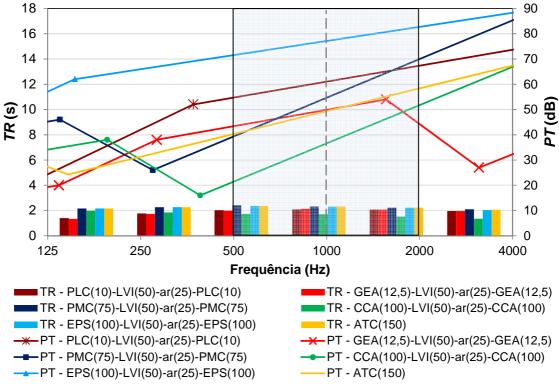


Figura 7.22 – Tempo de reverberação (auditório – V₂) e perda na transmissão sonora para fechamentos de painéis em multicamadas, com lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC

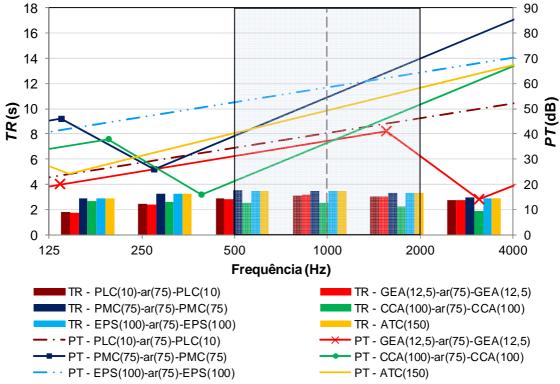


Figura 7.23 – Tempo de reverberação (auditório – V₃) e perda na transmissão sonora para fechamentos de painéis em multicamadas, sem lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC

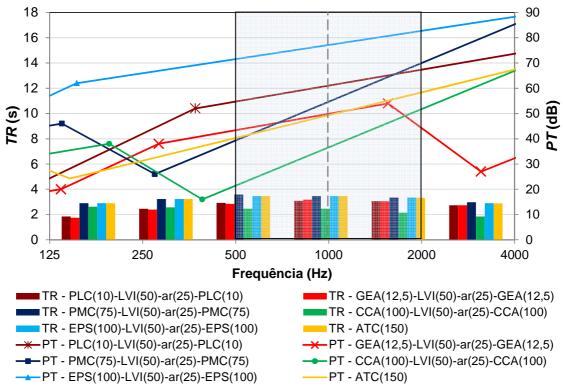


Figura 7.24 – Tempo de reverberação (auditório – V₃) e perda na transmissão sonora para fechamentos de painéis em multicamadas, com lã de vidro, de PLC, GEA, PMC, CCA, EPS e de ATC

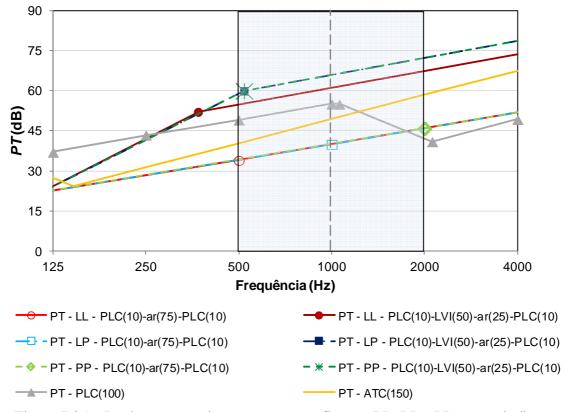


Figura 7.25 – Perda na transmissão sonora para fixação LL, LP e PP para painéis em multicamadas de placa cimentícia e para alvenaria

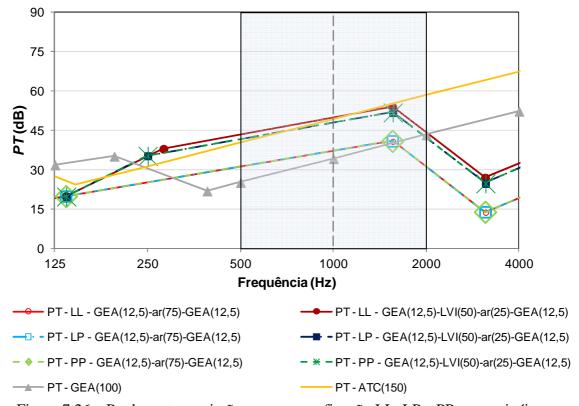


Figura 7.26 – Perda na transmissão sonora para fixação LL, LP e PP para painéis em multicamadas de gesso acartonado e para alvenaria

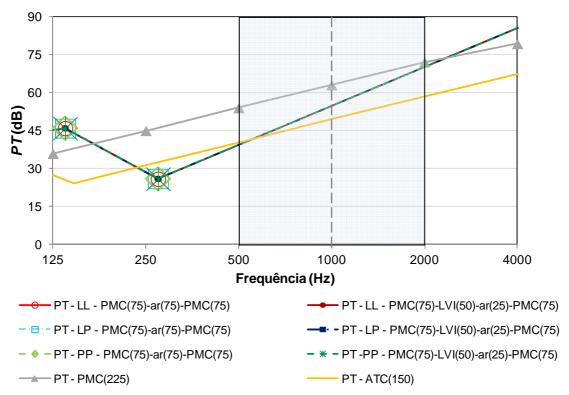


Figura 7.27 – Perda na transmissão sonora para fixação LL, LP e PP para painéis em multicamadas de pré-moldado de concreto e para alvenaria

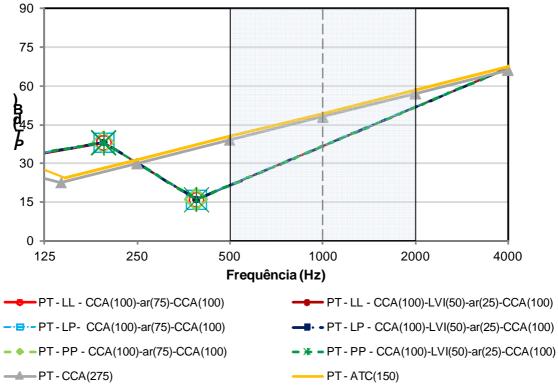


Figura 7.28 – Perda na transmissão sonora para fixação LL, LP e PP para painéis em multicamadas de concreto celular autoclavado e para alvenaria

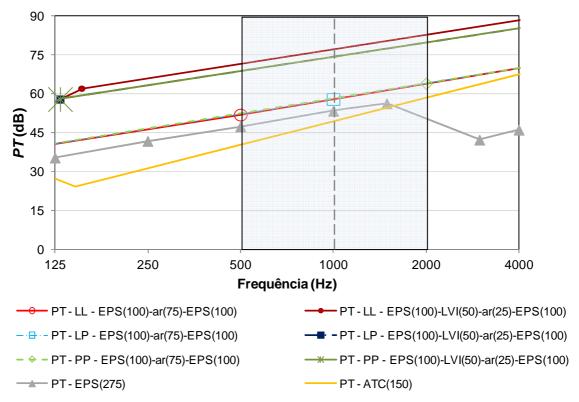


Figura 7.29 – Perda na transmissão sonora para fixação LL, LP e PP para painéis em multicamadas de poliestireno expandido e para alvenaria

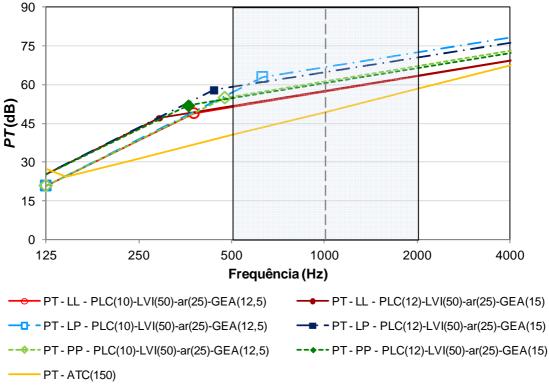


Figura 7.30 – Perda na transmissão sonora para fixação LL, LP e PP para painéis em multicamadas de placa cimentícia, com gesso acartonado, e para alvenaria

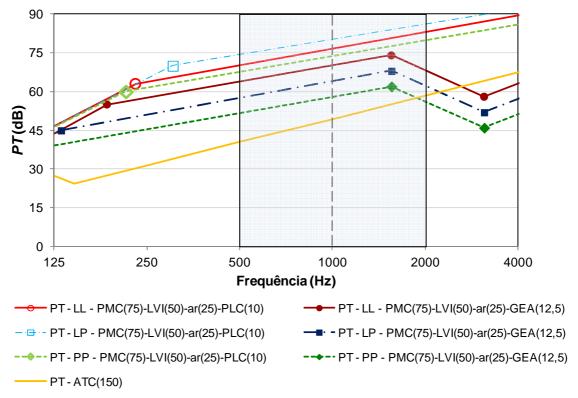


Figura 7.31 – Perda na transmissão sonora para fixação LL, LP e PP para painéis em multicamadas de pré-moldado de concreto, com placa cimentícia e gesso acartonado, e para alvenaria

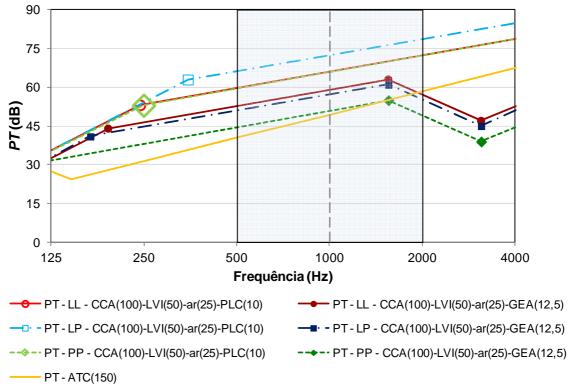


Figura 7.32 – Perda na transmissão sonora para fixação LL, LP e PP para painéis em multicamadas de concreto celular autoclavado, com placa cimentícia e gesso acartonado, e para alvenaria

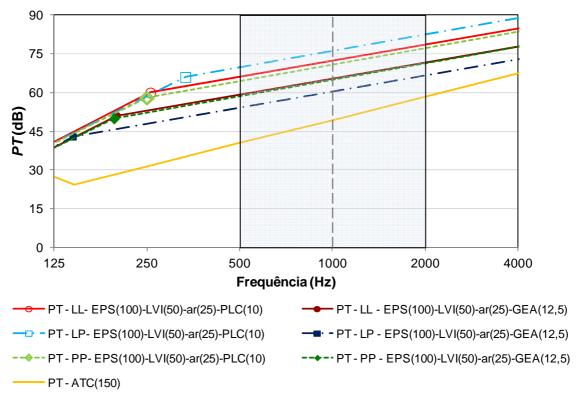


Figura 7.33 – Perda na transmissão sonora para fixação LL, LP e PP para painéis em multicamadas de poliestireno expandido, com placa cimentícia e gesso acartonado, e para alvenaria

7.2. Análise dos resultados de perda na transmissão sonora

A análise dos resultados de perda na transmissão sonora é feita primeiramente para os painéis simples e em seguida para os painéis compostos por multicamadas.

7.2.1. Análise dos resultados obtidos para os painéis simples

No cálculo da perda na transmissão sonora de painéis simples realizado pelo método gráfico, tem-se configurado o *vale da coincidência*, no qual ocorre a queda da perda na transmissão sonora, que reduz o isolamento sonoro da parede, e a menor frequência de coincidência, que é a frequência crítica. Esses efeitos podem ser observados para a maioria dos painéis no intervalo de frequências considerado (Figuras 7.1 a 7.24). A frequência crítica (f_c) é tanto maior quanto menor é a rigidez à flexão do material que compõe o painel (B_s). Para um mesmo material com espessuras diferentes e para materiais diferentes, ou seja, em painéis menos espessos, a rigidez fica diminuída e o valor de f_c aumenta (Tabela 4.3).

Os valores de perda na transmissão sonora calculados pela Lei da Massa são ascendentes conforme aumenta a frequência e não fica configurada a sua queda, que distingue a região controlada pela massa da região controlada pela coincidência de cada painel, observada na aplicação do método gráfico. Dessa forma, quando se aplica a Lei da Massa, os valores da *PT* ficam superestimados em uma determinada faixa de frequência, a partir da metade da frequência crítica, correspondente ao ponto B (Figuras 2.13; 7.1 a 7.18; Tabelas 7.1 e 7.2).

Considerando a frequência de 1000 Hz e a Lei da Massa, os maiores valores de perda na transmissão sonora são proporcionados pelo painel de PMC(225) e pela ATC(150), de 67 dB e 62 dB, respectivamente (Tabela 7.1). Para essa mesma frequência e considerando o método gráfico, os maiores valores de perda na transmissão sonora são proporcionados pelos painéis de PMC(225) e PLC(100), de 62 dB e 55 dB, respectivamente. Ainda para essa frequência, o painel de PMC(225) encontra-se na região controlada pela coincidência e o painel de PLC(100) encontra-se na região em que predomina a Lei da Massa. O fechamento de ATC(150) oferece uma *PT* de 49 dB, pelo método gráfico, e encontra-se na região controlada pela coincidência na frequência de 1000 Hz (Figuras 7.1 e 7.3 e Tabela 7.1).

O painel de CCA(275) possui comportamento bastante similar ao fechamento de ATC(150), em termos de perda na transmissão sonora (Figura 7.4).

O valor da queda da perda na transmissão sonora é o mesmo para painéis de mesmo material, mas os valores das frequências associadas a essa *PT* variam (Tabela 7.2). Os valores da perda na transmissão sonora devem ser verificados principalmente quando estão dentro da faixa de frequência de 500 a 2000 Hz, intervalo que compreende importantes frequências da fala (Item 2.3.2.4). Para uma melhor isolação sonora, em geral, adotam-se componentes que possuam frequências críticas fora dessa faixa, menores ou maiores, situadas em zonas pouco sensíveis ao ouvido humano. Diante disso, os painéis de PLC(10), PLC(12), GEA(100), PMC(75), PMC(100), PMC(225), CCA(100), CCA(275), EPS(100) e ATC(73) são adequados (Tabela 7.2).

Adotando como referência a frequência de 1000 Hz, dentre os painéis simples avaliados, o painel de PMC(225), proporciona a maior *PT*, para os cálculos efetuados via Lei da Massa (67 dB) e método gráfico (62 dB), e a menor queda na *PT* (8 dB), o que significa que esse painel possui um desempenho acústico mais eficaz do que os demais fechamentos simples em termos de perda na transmissão sonora. Por outro lado, para essa frequência, a *PT* encontra-se na região da coincidência (Tabelas 7.1 e 7.2). Um desempenho nada satisfatório é observado

no painel de GEA(12,5), que apresenta a menor *PT*, para os cálculos efetuados via Lei da Massa e método gráfico (32 dB), e queda na *PT* de 13 dB. No entanto, para essa frequência, a *PT* encontra-se na região controlada pela massa do painel (Tabelas 7.1 e 7.2).

7.2.2. Análise dos resultados obtidos para os painéis compostos por multicamadas

Nas curvas representadas na primeira série de gráficos, que mostram a evolução da perda na transmissão sonora dos fechamentos em multicamadas estimada pelo método gráfico simplificado em função da frequência, Figuras 7.1 a 7.9, e observa-se que a perda na transmissão sonora obtida para os fechamentos intermediados por lã de vidro (LVI) e ar, em geral, supera a perda na transmissão sonora dos mesmos fechamentos sem esse material isolante, dos painéis simples de mesmo material com espessuras aproximadas e da alvenaria de tijolo cerâmico.

Os fechamentos compostos pelos painéis constituídos por PLC, GEA, e EPS, nas espessuras avaliadas, intermediados por LVI e ar, proporcionam perda na transmissão sonora maior do que os mesmos painéis sem esse material isolante. Desse modo entende-se que o efeito sanduíche (multicamadas) contribui para o desempenho acústico desses painéis (Figuras 7.1, 7.2 e 7.4). Os fechamentos compostos por painéis constituídos de PMC(75) e CCA(100), intermediados por LVI e ar, proporcionam perda na transmissão sonora igual aos mesmos fechamentos sem esse material isolante. No caso desses fechamentos, a camada intermediária não apresenta contribuição para o desempenho acústico desses painéis (Figuras 7.3 e 7.4).

Em algumas curvas apresentadas estão bem configuradas as regiões nas quais pode ocorrer a ressonância da cavidade, nas baixas frequências, a partir das quais predomina a Lei da Massa, bem como a região controlada pela coincidência, caracterizada pela queda na perda da transmissão sonora em frequências mais elevadas (Figuras 7.1 a 7.9).

Avaliando o comportamento dos fechamentos em multicamadas na faixa de frequência entre 500 e 2000 Hz, verifica-se que, nos fechamentos constituídos por PLC(10), PLC(12) e EPS(100), todos sem e com LVI, a *PT* encontra-se na região na qual predomina a Lei da Massa. Nos fechamentos constituídos por GEA(12,5) e GEA(15), sem e com LVI, a *PT* encontra-se em parte na região controlada pela Lei da Massa e em parte na região controlada pela coincidência. Nos fechamentos constituídos por PMC(75) e CCA(100), ambos sem e com LVI, a *PT* encontra-se na região controlada pela coincidência (Figuras 7.1 a 7.5).

Para essa mesma faixa de frequência, entre 500 e 2000 Hz, nos fechamentos mistos constituídos por PLC(10) com GEA(12,5) e por PLC(12) com GEA(15), PMC(75) com PLC(10), CCA(100) com PLC(10), EPS(100) com PLC(10), bem como EPS(100) com GEA(12,5), todos com LVI, a *PT* encontra-se na região controlada pela Lei da Massa. Nos fechamentos também mistos constituídos por PMC(75) com GEA(12,5) e por CCA(100) com GEA(12,5), ambos com LVI, a *PT* encontra-se em parte na região controlada pela Lei da Massa e em parte na região controlada pela coincidência (Figuras 7.6 a 7.9).

Também para a faixa de frequência considerada, a *PT* do fechamento em ATC(150) encontrase na região controlada pela coincidência (Figuras 7.1 a 7.9).

Tomando como referência a frequência de 1000 Hz, a maioria dos fechamentos apresenta *PT* acima de 45 dB, valor mínimo recomendado pela NBR 15575 (ABNT, 2013; Tabela 3.11), em paredes de dormitórios, quando os sons muito altos devem ser ouvidos muito fracamente. Ressalta-se que o fechamento em alvenaria de tijolo cerâmico proporciona *PT* estimada de 49 dB, para essa frequência (Figuras 7.1 a 7.9).

Os fechamentos que mostram baixo desempenho acústico, com *PT* menor do que 45 dB, são os compostos por CCA(100) sem e com LVI, GEA(12,5) e GEA(15) sem LVI, bem como PLC(10) e PLC(12) sem LVI. Os que mostram melhor desempenho acústico, com *PT* acima de 60 dB, por exemplo, são os compostos por PLC(10), PLC(12), EPS(100) ambos com LVI, e os fechamentos mistos com LVI compostos por PMC(75) com PLC(10), PMC(75) com GEA(12,5), CCA(100) com PLC(10), EPS(100) com PLC(10) e EPS(100) com GEA(12,5).

Os fechamentos compostos por GEA(12,5), GEA(15) e por CCA(100) proporcionam baixa PT, mas, quando combinados com outros materiais, o valor da PT aumenta, melhorando o desempenho acústico. O fechamento de ATC(150) também oferece bom desempenho acústico.

Nas curvas representadas na segunda e terceira séries de gráficos apresentados nas Figuras 7.10 a 7.18 e Figuras 7.19 e 7.20, respectivamente, está mostrada a evolução da perda na transmissão sonora em função da frequência dos mesmos fechamentos em multicamadas da primeira série de gráficos (Figuras 7.1 a 7.9), variando-se, de uma série para outra, o tempo de reverberação das zonas avaliadas (sala de seminários sse4 e auditório – V_1 , V_2 e V_3).

Nesse capítulo avalia-se a perda na transmissão sonora, deixando-se uma análise global dos resultados, em termos de temperatura interna, tempo de reverberação e perda na transmissão sonora, de cada zona, para o Capítulo 8.

Relacionada à largura da cavidade entre os painéis tem-se as frequências limites (f_i) de 733 Hz para cavidades de 75 mm de largura e 611 Hz para cavidades de 90 mm de largura. As perdas na transmissão sonora associadas a essas frequências limites são maiores para os fechamentos constituídos de PMC (114 dB), EPS (103 dB) e CCA (91 dB), nas espessuras avaliadas (Tabela 7.4).

Os resultados de perda na transmissão sonora obtidos para os três tipos de fixação dos painéis em multicamadas, LL, LP e PP, apresentados nas Figuras 7.25 a 7.33, mostram que, para os fechamentos constituídos por painéis de PLC(10), GEA(12,5) e EPS(100), sem LVI, e PMC(75) e CCA(100), sem e com LVI, o tipo de fixação não influencia nos valores de perda na transmissão sonora em função da frequência (Figuras 7.25 a 7.29). Para os outros fechamentos há pequenas alterações nesses valores, bem como nos valores das frequências que limitam a região controlada pela ressonância da região controlada pela Lei da Massa e dessa pelo vale da coincidência (Figuras 7.25, 7.26, 7.29 a 7.33).

Considerando a faixa de frequência entre 500 e 2000 Hz, as ligações LP e PP proporcionam maiores valores de *PT* para os fechamentos constituídos por painéis de PLC(10) com LVI. A fixação LL proporciona maiores valores de *PT* para os fechamentos constituídos por painéis de GEA(12,5) e EPS(100), ambos com LVI. Para os fechamentos mistos com LVI constituídos por PLC(10) com GEA(12,5) e PLC(12) com GEA(15), PMC(75) com PLC(10), CCA(100) com PLC(10) e também EPS(100) com PLC(10), a fixação LP proporciona maiores valores de *PT* (Figuras 7.30 a 7.33).

8. ANÁLISE GLOBAL DOS RESULTADOS, CONSIDERAÇÕES FINAIS E SUGESTÕES PARA TRABALHOS FUTUROS

Para uma visualização geral dos resultados, estão mostrados na Tabela 8.1 a perda na transmissão sonora (PT) dos fechamentos compostos por painéis em multicamadas, estudados no Capítulo 7 e do fechamento em alvenaria de tijolo cerâmico, bem como os tempos de reverberação (TR), pelo método de Sabine, e as temperaturas internas (T_i) obtidas nas zonas térmicas denominadas de dormitório do Edifício I, sse4 do Edifício II e auditório do Edifício III, para V_1 , V_2 e V_3 , no horário de temperatura externa máxima (14h30), na frequência de 1000 Hz. Para o auditório não foram analisados os fechamentos com largura da cavidade igual a 90 mm e nem os fechamentos em multicamadas mistos.

Tabela 8.1. PT e TR (Sabine) dos fechamentos em multicamadas e da ATC, e T_i das zonas térmicas estudadas dos Edifícios I, II e III, às 14h30 e 1000 Hz

		Edi	fício	Edi	fício	Edit	fício	Edit	fício	Edit	ício
Eschemente em multicomo dos	PT		I]	Ι	III ((V_1)	III ((V_2)	III ((V_3)
Fechamento em multicamadas	(dB)	TR	T_i	TR	T_i	TR	T_i	TR	T_i	TR	T_i
		(s)	(°C)	(s)	(°C)	(s)	(°C)	(s)	(°C)	(s)	(°C)
1. PLC(10)-ar(75)-PLC(10)	41	2,47	25,3	3,38	29,8	1,34	31,9	2,08	28,8	3,08	23,0
2. PLC(10)-LVI(50)-ar(25)-PLC(10)	61	2,54	18,5	3,38	30,0	1,34	31,3	2,09	27,8	3,09	22,3
3. PLC(12)-ar(90)-PLC(12)	42	2,47	24,9	3,37	30,6	ı	-	1	-	1	-
4. PLC(12)-LVI(50)-ar(40)-PLC(12)	62	2,54	18,4	3,38	29,9	-	-	-	-	-	-
5. GEA(12,5)-ar(75)-GEA(12,5)	37	2,81	23,6	3,71	29,9	1,36	32,1	2,12	31,6	3,17	23,0
6. GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	50	2,88	18,3	3,71	29,8	1,36	31,8	2,14	31,3	3,18	22,4
7. GEA(15)-ar(90)-GEA(15)	39	2,82	23,4	3,71	30,0	-	-	-	-	-	-
8. GEA(15)-LVI(50)-ar(40)-GEA(15)	51	2,88	18,2	3,71	29,8	-	-	-	-	-	-
9. PMC(75)-ar(75)-PMC(75)	55	4,71	22,7	5,28	29,2	1,46	26,8	2,31	26,8	3,48	22,4
10. PMC(75)-LVI(50)-ar(25)-PMC(75)	55	4,87	17,5	5,29	28,9	1,46	26,7	2,31	26,7	3,48	21,9
11. CCA(100)-ar(75)-CCA(100)	37	1,23	17,5	1,88	29,5	1,14	29,5	1,71	29,2	2,54	22,1
12. CCA(100)-LVI(50)-ar(25)-CCA(100)	37	1,23	16,3	1,88	29,4	1,14	29,5	1,71	29,2	2,47	22,0
13. EPS(100)-ar(75)-EPS(100)	58	4,94	15,6	5,27	29,4	1,45	28,8	2,30	28,6	3,38	21,8
14. EPS(100)-LVI(50)-ar(25)-EPS(100)	78	4,95	15,4	5,27	29,3	1,45	28,8	2,30	28,6	3,48	21,8
15. PLC(10)-LVI(50)-ar(25)-GEA(12,5)	57	2,88	18,6	3,71	29,9	-	-	-	-	-	-
16. PLC(12)-LVI(50)-ar(40)-GEA(15)	57	2,88	18,4	3,71	29,9	-	-	-	-	-	-
17. PMC(75)-LVI(50)-ar(25)-PLC(10)	77	2,54	17,9	3,38	29,8	-	-	-	-	-	-
18. PMC(75)-LVI(50)-ar(25)-GEA(12,5)	70	2,88	18,0	3,71	29,8	-	-	-	-	-	-
19. CCA(100)-LVI(50)-ar(25)-PLC(10)	67	2,55	17,2	3,38	29,8	-	-	-	-	-	-
20. CCA(100)-LVI(50)-ar(25)-GEA(12,5)	58	2,90	17,3	3,71	29,8	-	-	-	-	-	-
21. EPS(100)-LVI(50)-ar(25)-PLC(10)	72	2,57	15,3	3,38	29,7	-	-	-	-	-	-
22. EPS(100)-LVI(50)-ar(25)-GEA(12,5)	65	2,92	15,4	3,72	29,7	-	-	-	-	-	-
23. ATC(150)	49	4,73	22,0	5,29	29,0	1,46	27,1	2,31	27,1	3,48	22,3

O fechamento em multicamadas composto por concreto celular autoclavado, intermediado por lã de vidro e ar, na espessura total de 275 mm, promove temperaturas internas e tempos de reverberação menores do que os outros fechamentos, o que indica bom desempenho térmico e acústico em termos de tempo de reverberação. Mas a perda na transmissão sonora é baixa em relação aos outros fechamentos (Tabela 8.1).

O fechamento em multicamadas composto por poliestireno expandido, intermediado por lã de vidro e ar, também na espessura total de 275 mm, promove temperaturas internas menores e perda na transmissão sonora maior do que os outros fechamentos, mostrando bom desempenho térmico e acústico em termos de perda na transmissão sonora. Mas os tempos de reverberação mostram-se elevados em relação aos outros fechamentos. O mesmo comportamento ocorre com o fechamento composto por painéis de pré-moldado de concreto, muito utilizado no Brasil até mesmo como painel simples e fechamentos externos, mas possui a desvantagem do peso elevado (Tabela 8.1).

Por outro lado, verifica-se que o fechamento em multicamadas composto por placa cimentícia, intermediado por lã de vidro e ar, na espessura total de 95 mm, mostra um desempenho térmico e acústico intermediário, sendo capaz de concorrer com o fechamento em alvenaria de tijolo cerâmico, na espessura de 150 mm, e ainda possui a vantagem de ser menos espesso e mais leve. Considerando o dormitório do Edifício I, a temperatura interna (18,5 °C) e a perda na transmissão sonora (61 dB) proporcionadas por esse fechamento atendem à norma NBR 15575 (ABNT, 2013) e o tempo de reverberação (2,54 s) se apresenta mais baixo que a maioria dos fechamentos analisados. Esse fechamento, de placa cimentícia, lã de vidro e ar, quando comparado ao fechamento de alvenaria de tijolo cerâmico, promove temperatura interna 16 % mais baixa, tempo de reverberação 46 % menor e perda na transmissão sonora 20 % mais elevada, proporcionando desempenho térmico e acústico satisfatório (Tabela 8.1).

De modo geral, os fechamentos em multicamadas, intermediados por lã de vidro e ar, proporcionam um desempenho térmico e acústico superior ao fechamento simples convencional, com uma melhora no desempenho na ordem de 12 %, considerando os Edifícios I e II, e de 18 %, em termos de perda na transmissão sonora, respectivamente (Tabela 8.1).

Nas Figuras 8.1 a 8.7 está mostrada graficamente a dispersão da T_i , TR e PT, proporcionada pelos fechamentos intermediados por lã de vidro e ar conforme numeração apresentada na

Tabela 8.1, destacando-se a posição do fechamento em alvenaria de tijolo cerâmico para que se possa acompanhar o desempenho dos outros fechamentos em relação a ele.

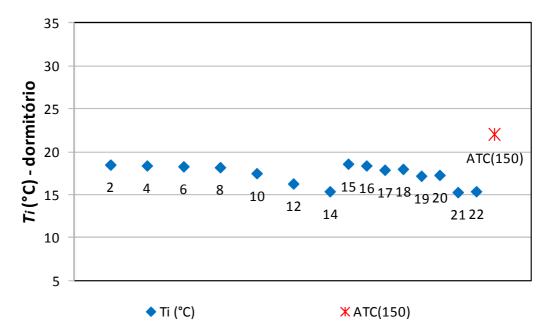


Figura 8.1 – Dispersão da temperatura interna proporcionada pelos fechamentos de painéis em multicamadas com lã de vidro e de alvenaria de tijolo cerâmico – dormitório

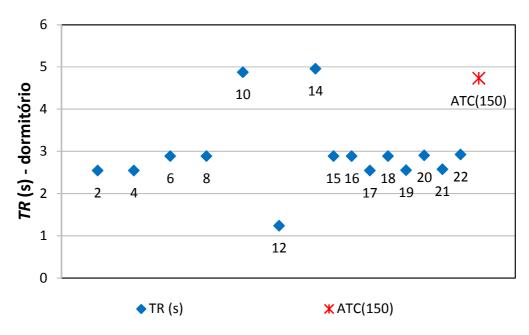


Figura 8.2 – Dispersão do tempo de reverberação proporcionado pelos fechamentos de painéis em multicamadas com lã de vidro e de alvenaria de tijolo cerâmico – dormitório

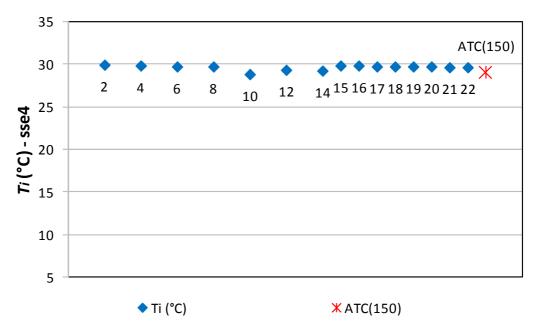


Figura 8.3 – Dispersão da temperatura interna proporcionada pelos fechamentos de painéis em multicamadas com lã de vidro e de alvenaria de tijolo cerâmico – sse4

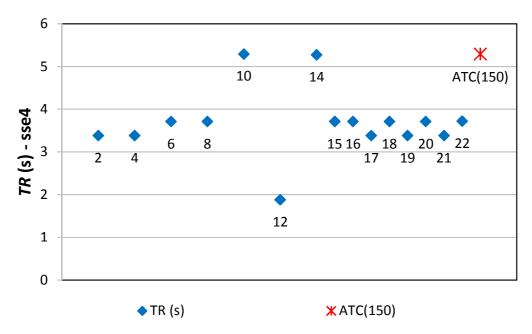


Figura 8.4 – Dispersão do tempo de reverberação proporcionado pelos fechamentos de painéis em multicamadas com lã de vidro e de alvenaria de tijolo cerâmico – sse4

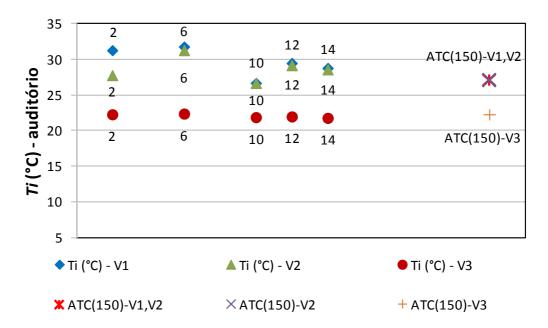


Figura 8.5 – Dispersão da temperatura interna proporcionada pelos fechamentos de painéis em multicamadas com lã de vidro e de alvenaria de tijolo cerâmico – auditório $(V_1, V_2 \ e \ V_3)$

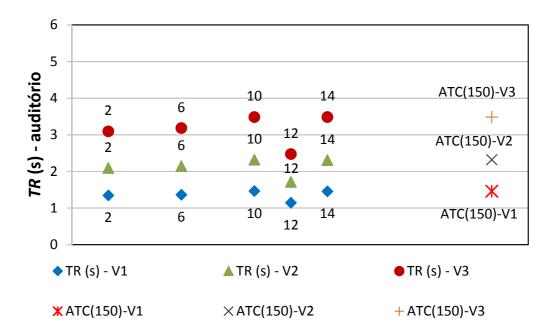


Figura 8.6 – Dispersão do tempo de reverberação proporcionado pelos fechamentos de painéis em multicamadas com lã de vidro e de alvenaria de tijolo cerâmico – auditório $(V_1, V_2 \ e \ V_3)$



Figura 8.7 – Dispersão da perda na transmissão sonora proporcionada pelos fechamentos de painéis em multicamadas com lã de vidro e de alvenaria de tijolo cerâmico

Nota-se que os resultados de temperatura interna e tempo de reverberação mostram-se mais homogêneos para a maioria dos fechamentos, e que há uma maior dispersão dos resultados quanto à perda na transmissão sonora (Figuras 8.1 a 8.7). Em várias situações os fechamentos pré-fabricados em multicamadas intermediados por lã de vidro e ar mostram resultados melhores ou equivalentes aos dos fechamentos em alvenaria, podendo-se dizer que o uso desse material, em alguns casos, favorece o desempenho do fechamento.

Assim, dependendo da situação, um fechamento não precisa possuir ótimo desempenho térmico e acústico para ser aplicado, devendo ser avaliada cada edificação, sua finalidade, tipo de usuários, materiais e mão de obra disponíveis e relação custo-benefício.

8.1. Considerações finais

A aplicação de fechamentos verticais compostos por painéis em multicamadas em edificações de estruturas metálicas vem se apresentando como uma solução adequada, pois além de possuírem a mesma filosofia de pré-fabricação do elemento estrutural em aço, esses painéis diminuem o peso do sistema construtivo e podem possibilitar criações arquitetônicas diversas.

Sendo uma das preocupações de projeto o conforto dos usuários, o sistema de fechamento em multicamadas com a utilização de material absorvedor acústico, como a lã de vidro, na cavidade de ar entre as placas do fechamento, mostra-se eficiente, tanto no desempenho acústico quanto no desempenho térmico, como pode ser observado em alguns dos fechamentos aqui estudados.

A determinação da temperatura interna e do tempo de reverberação em um ambiente fechado, bem como da transmissão sonora através de um fechamento em multicamadas, é bastante complexo, pois são envolvidos vários parâmetros conforme visto no presente estudo. Nesse contexto, o método proposto nessa pesquisa de avaliação integrada de desempenho térmico e acústico para aplicação em sistemas de fechamento industrializados compostos por multicamadas mostra-se como ferramenta adequada para uma análise térmica e acústica preliminar do fechamento.

A obtenção do tempo de reverberação pelo *software* ESP-r apresenta a limitação de que a saída dos resultados é apenas em função da frequência. Para se obter os resultados ao longo de um dia, são necessárias simulações para cada hora do dia.

Os resultados de estimativa da perda na transmissão sonora representam o comportamento acústico dos fechamentos em multicamadas, considerando a distância entre eles e a existência ou não de material absorvedor na cavidade, não levando em conta o valor da espessura do material absorvedor, sendo apenas recomendado que ele atenda a uma espessura mínima. Por exemplo, se a menor frequência de interesse for 500 Hz, sua espessura mínima é de 30 mm. Nesse estudo a espessura da lã de vidro aplicada nos cálculos e simulações não ocupa todo o espaço de ar e é de 50 mm, para as cavidades de 75 e 90 mm.

No Capítulo 7 foram feitas considerações sobre o comportamento dos fechamentos na faixa de frequência de interesse de 500 a 1000 Hz. Entretanto, é necessário que a perda na transmissão sonora de uma parede seja especificada e discutida para uma ampla faixa de frequência para uma melhor análise das deficiências que ocorrem nas regiões controladas pela ressonância e pela coincidência.

Para melhor exemplificar e mostrar a aplicação do método, nos estudos de caso, foram adotadas edificações de volumes diferentes e de usos distintos, sendo que alguns dos fechamentos estudados, como por exemplo, os compostos por placa cimentícia e gesso acartonado, normalmente são aplicados em edificações construídas sob o sistema *light steel framing*.

Esse método mostra-se mais eficiente em materiais de pouca espessura, mas pode ser aplicado a qualquer tipo de edificação, material de fechamento, espessura e clima local, bastando apenas que sejam alteradas as características do clima local, da edificação e dos materiais envolvidos, bem como suas propriedades térmicas e acústicas.

8.2. Sugestões para trabalhos futuros

Para dar continuidade, essa pesquisa poderá avançar, sugerindo-se uma avaliação dos fechamentos propostos para outras zonas climáticas, pois cada material responde de maneira distinta conforme o clima local.

Outra sugestão é fazer uma análise experimental com medições de temperatura interna, tempo de reverberação e perda na transmissão sonora em protótipos, aplicando-se neles alguns dos fechamentos aqui avaliados.

Propõe-se ainda um aperfeiçoamento do módulo acústico do software ESP-r, para que a variação horária do tempo de reverberação possa ser obtida de uma maneira direta, e a programação do método gráfico simplificado para obtenção da perda na transmissão sonora.

REFERÊNCIAS

densidade. Rio de Janeiro, 2007d. 2 p.

AKUTSU, M. Método para a avaliação do desempenho térmico de edificações no Brasil. 1998. 156 f. Tese (Doutorado em Arquitetura) - Faculdade de Arquitetura e Urbanismo, Universidade de São Paulo, São Paulo, 1998.

ARAU-PUCHADES, H. An improved reverberation formula. Journal Acustica, v. 65, n. 4, p. 163-180, 1988.

ARAÚJO, E.C; SOUZA, H.A.; COSTA, R.M.X. A interface entre os perfis tubulares e o sistema de fechamento vertical externo. São Paulo, Editora Adonis, 2009. 43 p.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS NRR 10411: Inspecão e

amostragem de isolantes térmicos – Procedimento. Rio de Janeiro, 1988. 4 p.
NBR 12094 : Espuma rígida de poliuretano para fins de isolamento térmico – Determinação da condutividade térmica – Método de ensaio. Rio de Janeiro, 1991. 5 p.
NBR 8082 : Espuma rígida de poliuretano para fins de isolação térmica – Resistência à compressão. Rio de Janeiro, 1992a. 3 p.
NBR 12179 : Tratamento acústico em recintos fechados — Procedimento. Rio de Janeiro, 1992b. 9 p.
NBR 13438 : Blocos de concreto celular autoclavado – Especificação. Rio de Janeiro, 1995a. 4 p.
NBR 13439 : Blocos de concreto celular autoclavado – Resistência à compressão. Rio de Janeiro, 1995b. 3 p.
NBR 13440 : Blocos de concreto celular autoclavado – Verificação da densidade de massa aparente seca. Rio de Janeiro, 1995c. 3 p.
NBR 10151 : Avaliação do ruído em áreas habitadas visando o conforto da comunidade - Procedimento. Rio de Janeiro, 2000a. 4 p.
NBR 10152: Níveis de ruído para conforto acústico. Rio de Janeiro, 2000b. 4 p.
NBR 14956 : Blocos de concreto celular autoclavado – Execução de alvenaria sem função estrutural – 2 Partes. Rio de Janeiro, 2003.
NBR 15220 : Desempenho térmico de edificações – 5 Partes. Rio de Janeiro, 2005a. 92 p.
NBR 15270: Componentes cerâmicos – 3 Partes. Rio de Janeiro, 2005b. 49 p.
NBR 9062 : Projeto e execução de estruturas de concreto pré-moldado. Rio de Janeiro, 2006. 59 p.
NBR 7973 : Poliestireno expandido para isolação térmica — Determinação de absorção de água. Rio de Janeiro, 2007a. 4 p.
NBR 11752 : Materiais celulares de poliestireno para isolamento térmico na construção civil e câmaras frigoríficas. Rio de Janeiro, 2007b. 11 p.
NBR 11948 : Poliestireno expandido para isolação térmica — Determinação da flamabilidade. Rio de Janeiro, 2007c. 4 p.
NBR 11949: Poliestireno expandido para isolação térmica – Determinação da

_____. **NBR 15812**: Alvenaria estrutural – Blocos cerâmicos – 2 Partes. Rio de Janeiro, 2010.

. NBR 15575: Edifícios habitacionais – Desempenho. Rio de Janeiro, 2013. 381 p.

BASTOS, M.A.R. Avaliação de sistemas construtivos semi e/ou industrializados de edifícios de andares múltiplos através da perspectiva de seus usuários. 2004. 458 p. Dissertação (Mestrado em Engenharia Civil) — Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, 2004. 2v.

BERANEK, L.L. **Noise and Vibration Control**. Institute of Noise Control Engineering, Washington DC: 1988 apud CITHERLET, S. **Towards the holistic Assessment of building performance based on an integrated simulation approach**. 2001. 231 f. Thesis (Doctor ès Sciences), Swiss Federal Institute of Technology (EPFL), Lausanne, 2001.

BIES, D.A.; HANSEN, C.H. **Engineering Noise Control: Theory and Practice**. 3^a ed. London and New York: Spon Press, 2003. 719 p.

BISTAFA, S.R. **Acústica Aplicada ao Controle de Ruído**. São Paulo Edgard Blücher, 2006. 368 p.

BRASILIT. Linha BrasiPlac. Catálogo. São Paulo: Saint-Gobain Brasilit Ltda, 2006.

CEOTTO, L.H. A industrialização da construção de edifícios: de passado letárgico para um futuro promissor. In: FARIA, C.P. (Org.). **Inovação em Construção Civil: monografias**. São Paulo: Instituto UNIEMP, 2005. p. 85-106

CITHERLET, S. Towards the holistic Assessment of building performance based on an integrated simulation approach. 2001. 231 f. Thesis (Doctor ès Sciences), Swiss Federal Institute of Technology (EPFL), Lausanne, 2001.

CITHERLET, S.; HAND, J. Assessing energy, lighting, room acoustics, occupant comfort and environmental impacts performance of building with a single simulation program. **Building and Environment**, v. 37, p. 845-856, 2002.

CITHERLET, S.; MACDONALD, I. Integrated assessment of thermal performance and room acoustics. **Energy and buildings**, v. 35, p. 249-255, 2003.

CLARKE, J.A. et al.. ESP-r: A program for building energy simulation. Version 9 Series, ESRU Manual U93/1. Glasgow, Scotland, 1993.

CORNACCHIA, G.M.M. **Investigação in-situ do isolamento sonoro ao ruído de impacto em edifícios residenciais**. 2009. 142 p. Dissertação (Mestrado em Arquitetura e Urbanismo) – Universidade Federal de Santa Catarina. Florianópolis, 2009.

COSTA, E.C. Ventilação. São Paulo: Edgard Blücher, 2005. 256 p.

CRASTO, R.C.M. Arquitetura e tecnologia em sistemas construtivos industrializados: *light steel framing*. 2005. 231 f. Dissertação (Mestrado em Engenharia Civil) – Escola de Minas, Universidade Federal de Ouro Preto. Ouro Preto, 2005.

DUARTE, J.R.A. Mapa do Zoneamento Bioclimático da ABNT (2003) sobreposto ao Mapa Político do Brasil. Montagem ilustrativa. Disponível em: <www.jrrio.com.br>. Acesso em: 30 set. 2012.

DUCOURNEAU, J.; PLANEAU, V. The average absorption coefficient for encloused spaces with non-uniformly distributed absorption. **Applied Acoustics**, v. 64, p. 845-862, 2003.

- ENERGYPLUS: Energy Simulation Software. Weather Data. Disponível em ">http://apps1.eere.energy.gov/buildings/energyplus/cfm/weather_data3.cfm/region=3_south_america_wmo_region_3/country=BRA/cname=Brazil>">http://apps1.eere.energy.gov/buildings/energyplus/cfm/weather_data3.cfm/region=3_south_america_wmo_region_3/country=BRA/cname=Brazil>">http://apps1.eere.energy.gov/buildings/energyplus/cfm/weather_data3.cfm/region=3_south_america_wmo_region_3/country=BRA/cname=Brazil>">http://apps1.eere.energy.gov/buildings/energyplus/cfm/weather_data3.cfm/region=3_south_america_wmo_region_3/country=BRA/cname=Brazil>">https://apps1.eere.energy.gov/buildings/energyplus/cfm/weather_data3.cfm/region=3_south_america_wmo_region_3/country=BRA/cname=Brazil>">https://apps1.eere.energy.gov/buildings/energyplus/cfm/weather_data3.cfm/region=3_south_america_wmo_region_3/country=BRA/cname=Brazil>">https://apps1.eere.energy.gov/buildings/energyplus/cfm/weather_data3.cfm/region=3_south_america_wmo_region_3/country=BRA/cname=Brazil>">https://apps1.eere.energy.gov/buildings/energyplus/cfm/weather_data3.cfm/region=3_south_america_wmo_region_3/country=BRA/cname=Brazil>">https://apps1.eere.energyplus/cfm/weather_data3.cfm/region=3_south_america_wmo_region
- EUROPEAN COMMITTEE FOR STANDARDISATION, CEN, PrEN 12354/6 Building acoustics Estimation of acoustic performance of building from the performance of elements Part 6 Sound absorption in enclosed spaces. Brussels: CEN, 2000 apud CITHERLET, S. Towards the holistic Assessment of building performance based on an integrated simulation approach. 2001. 231 f. Thesis (Doctor ès Sciences), Swiss Federal Institute of Technology (EPFL), Lausanne, 2001.
- FERREIRA, A.M.C. **Avaliação do conforto acústico em salas de aula: Estudo de caso na Universidade Federal do Paraná**. 2006. 111 f. Dissertação (Mestrado em Engenharia Mecânica) Programa de Pós-Graduação em Engenharia Mecânica, Universidade Federal do Paraná, Curitiba, 2006.
- FRANSOZO, H.L. **Avaliação de desempenho de habitações de baixo custo estruturadas em aço**. 2003. 244 p. Dissertação (Mestrado em Engenharia Civil) Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto: 2003.
- GARCIA, D.B. **Análise do isolamento sonoro de sistemas construtivos residenciais estruturados em aço**. 2004. 126 f. Dissertação (Mestrado em Engenharia de Estruturas) Escola de Engenharia, Universidade Federal de Minas Gerais, Belo Horizonte, 2004.
- GERGES, S.N.Y. **Ruído, Fundamentos e Controle**. 2ª ed. Florianópolis: UFSC, 2000. 696 p.
- GIVONI, B. Comfort climate analysis and building design guidelines. **Energy and Buildings**, v. 18, n. 1, 1992.
- GOMES, A.P. **Avaliação do desempenho térmico de edificações** *Light Steel Framing*. 2007. 172 f. Dissertação (Mestrado em Engenharia Civil) Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, 2007.
- GOMES, A.P. **Método de Avaliação do desempenho térmico de edifícios comerciais e residenciais em** *Light Steel Framing*. 2012. 147 f. Tese (Doutorado em Engenharia Civil) Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, 2012.
- GOULART, S.V.G.; BARBOSA, M.J.; PIETROBON, C.E.; BOGO, A.; PITTA, T. Bioclimatologia aplicada ao projeto de edificações visando o conforto térmico. Relatório interno 02/94 NPC. Florianópolis: UFSC, 1994.
- GRAÇA, V.A.C.; KOWALTOWSKI, D.C.C.K.; PETRECHE, J.R.D. An evaluation method for school building design at the preliminary phase with optimisation for aspects of environmental comfort for the school system of the State of São Paulo in Brazil. **Building and Environment**, UK, v. 42, p. 984-999, 2005.
- HASSAN, O.A.B. **Building Acoustics and Vibrations: Theory and Practice**. Singapore: World Scientific, 2009. 947 p.
- HENRIQUES, C.L. Condicionantes de projeto para unidades escolares de pequeno e médio porte utilizando sistema construtivo em perfis formados a frio. 2005. 202 f. Dissertação (Mestrado em Engenharia Civil) Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, 2005.
- INSTITUTO DE PESQUISAS TECNOLÓGICAS DO ESTADO DE SÃO PAULO. **IPT**. Tecnologia de Edificações/Projeto de Divulgação Tecnológica Lix da Cunha, PINI, p. 215 –

224, São Paulo, 1998.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 266 : Acoustics – Preferred frequencies for measurements. Gèneve, 1975. 3 p.
ISO 140-1: Acoustics – Measurement of sound insulation in buildings and of building elements – Part 1: Requirements for laboratory test facilities with suppressed flanking transmission. Gèneve, 1997. 11 p.
ISO 140-2: Acoustics – Measurement of sound insulation in buildings and of building elements – Part 2: Determination, verification and application of precision data. Gèneve, 1991. 13 p.
ISO 140-3: Acoustics – Measurement of sound insulation in buildings and of building elements – Part 3: Laboratory measurements of airborne sound insulation between rooms. Gèneve, 1995. 20 p.
ISO 140-4: Acoustics – Measurement of sound insulation in buildings and of building elements – Part 4: Field measurements of airborne sound insulation between rooms. Gèneve, 1998. 24 p.
ISO 140-5: Acoustics – Measurement of sound insulation in buildings and of building elements – Part 5: Field measurement of airborne sound insulation of façade elements and façades. Gèneve, 1998. 24 p.
ISO 140-6: Acoustics – Measurement of sound insulation in buildings and of building elements – Part 5: Field measurement of airborne sound insulation of façade elements and façades. Gèneve, 1998. 24 p.
ISO 140-7: Acoustics – Measurement of sound insulation in buildings and of building elements – Part 7: Field measurements of impact sound insulation of floors. Gèneve, 1998. 17 p.
ISO 140-8: Acoustics – Measurement of sound insulation in buildings and of building elements – Part 8: Laboratory measurements of the reduction of transmitted impact noise by floor coverings on a heavyweight standard floor. Gèneve, 1997. 24 p.
ISO 140-9: Acoustics – Measurement of sound insulation in buildings and of building elements – Part 9: Laboratory measurement of room-to-room airborne sound insulation of a suspended ceiling with a plenum above it. Gèneve, 1985. 6p.
ISO 140-10: Acoustics – Measurement of sound insulation in buildings and of building elements – Part 10: Laboratory measurement of airborne sound insulation of small building elements. Gèneve, 1991. 16 p.
ISO 140-12 : Acoustics – Measurement of sound insulation in buildings and of building elements – Part 12: Laboratory measurement of room-to-room airborne and impact sound insulation of an access floor. Gèneve, 2000. 18 p.
ISO 140-13 : Acoustics – Measurement of sound insulation in buildings and of building elements – Part 13: Guidelines. Gèneve, 1997. 79 p.
ISO 140-14: Acoustics – Measurement of sound insulation in buildings and of building elements – Part 14: Guidelines for special situations in the Field. Gèneve, 2004. 31 p.
ISO 717-1 : Acoustics – Rating of sound insulation in buildings and of building elements – Part 1: Airborne sound insulation. Gèneve, 2013. 18 p.
ISO 717-2: Acoustics – Rating of sound insulation in buildings and of buildings

elements – Part 2: Impact sound insulation. Gèneve, 2013a. 17 p.

_____. **ISO 10052**: Acoustics – Field measurements of airborne and impact sound insulation and of equipment sound – Survey method. Gèneve, 2004. 30 p.

_____. **ISO 6946**: Building components and building elements – Thermal resistance and thermal tranmittance – Calculation method. Gèneve, 2007. 28 p.

_____. **ISO 10140**: Acoustics – Laboratory measurement of sound insulation of building elements – Parts 1-5. Gèneve, 2010. 104 p.

JOUHANEAU, J. Acoustique des salles et sonorisation. Tec & Doc Lavoisier ed. Paris, 1997 apud CITHERLET, S. Towards the holistic Assessment of building performance based on an integrated simulation approach. 2001. 231 f. Thesis (Doctor ès Sciences), Swiss Federal Institute of Technology (EPFL), Lausanne, 2001.

KINSLER, L.E.; FREY, A.R.; CONPPENS, A.B.; SANDERS, J.V. **Fundamentals of Acoustics**, 3ª ed., John Wiley & Sons, Inc., New York, 1982. 480 p.

KNUDSEN V.O.; HARRIS C.M. Acoustical Designing in Architecture. The Acoustical Society of America ed. New York, 1978 apud CITHERLET, S. **Towards the holistic Assessment of building performance based on an integrated simulation approach**. 2001. 231 f. Thesis (Doctor ès Sciences), Swiss Federal Institute of Technology (EPFL), Lausanne, 2001.

KRÜGER, E.L.; ZANNIN, P.H.T. Acoustic, thermal and luminous comfort in classrooms. **Building and Environment**. v. 39, 2004, p. 1055-1063.

LAMANCUSA, J.S. Noise Control Course – Lecture notes. The Pennsylvania State University: EUA, 2000 apud BISTAFA, S.R. **Acústica Aplicada ao Controle de Ruído**. São Paulo Edgard Blücher, 2006. 368 p.

LOPES, N.J. Aspectos técnicos: painéis de concreto pré-fabricados e suas vantagens. [S.l.: s.n.], 1989.

MAEKAWA, Z.; RINDEL, J.H.; LORD, P. Environmental and Architectural Acoustics. 2^a ed. New York: Spon Press, 2011. 360 p.

MAMMINI, O. O Processo Monolite de Construção com Painéis de EPS. **Téchne** 37, p.53-55, São Paulo: Pini, 1998.

MEHTA, M.; JOHNSON, J.; ROCAFORT, J. Architectural Acoustics: Principles and Design, New Jersey, Prentice Hall, 1999. 446 p.

MENDEZ, A.M. et al. Acústica arquitetônica. Buenos Aires: UMSA, 1991. 238 p. apud SALES, U.C. Mapeamento dos problemas gerados na associação entre sistemas de vedação e estrutura metálica e caracterização acústica e vibratória de painéis de vedação. 2001. 249 f. Dissertação (Mestrado em Engenharia Civil) – Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, 2001.

MITIDIERI FILHO, C. Paredes em chapas de gesso acartonado. **Téchne** 30, PINI, p. 65 – 70, São Paulo, 1997.

ORAL, G.K.; YENER, A.K.; BAYAZIT, N.T. Building envelope design with the objective to ensure thermal, visual and acoustic comfort conditions. **Building and Environment**, UK, v. 39, p. 281-287, 2004.

PASSERO, C.R.M.; ZANNIN, P.H.T. Statistical comparison of reverberation times measured by the integrated impulse response and interrupted noise methods, computationally simulated

- with ODEON software, and calculated by Sabine, Eyring and Arau-Puchades' formulas. **Applied Acoustics**, v. 71, p. 1204-1210, 2010.
- PELLERIN, N.; CANDAS, V. Combined effects of temperature and noise on human discomfort. **Physiology & Behavior**, v.78, p. 99-106, 2003.
- RIBAS, R.A.J. Avaliação das condições físico-construtivas e de desempenho de uma edificação estruturada em aço. Estudo de caso: Prédio da EM da UFOP. 2006. 186 f. Dissertação (Mestrado em Engenharia Civil) Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, 2006.
- RIBAS, R.A.J; SOUZA, H.A. Acoustic performance of closing panels used in steel structure buildings. In INTERNATIONAL CONGRESS ON SOUND & VIBRATION, 18.. 2011, Rio de Janeiro. Proceedings... Rio de Janeiro: IIAV, 2011, p. 1-8.
- RILEM INTERNATIONAL UNION OF LABORATORIES AND EXPERTS IN CONSTRUCTION MATERIALS, SYSTEMS AND STRUCTURES. RILEM Technical Comittees 78-MCA and 51-ALC. **Autoclaved aerated concrete**: properties, testing and design. New York: Taylor & Francis, 2005. ISBN 0 419 17960 7. Disponível em: . Acesso em: 05 abr. 2012. 456 p.
- SALES, U.C. Mapeamento dos problemas gerados na associação entre sistemas de vedação e estrutura metálica e caracterização acústica e vibratória de painéis de vedação. 2001. 249 f. Dissertação (Mestrado em Engenharia Civil) Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, 2001.
- SALES, U.C.; NEVES, F.A.; SOUZA, H.A. Avaliação comparativa do desempenho acústico de painéis de vedação pré-fabricados. In: ENCONTRO NACIONAL SOBRE CONFORTO NO AMBIENTE CONSTRUÍDO, 4., e ENCONTRO LATINO AMERICANO SOBRE CONFORTO NO AMBIENTE CONSTRUÍDO, 3., 2001, São Pedro, SP. **Anais**... ENCAC 2001: ANTAC, 2001, v.1, p. 1-7.
- SANCHO, V.M.; SENCHERMES, A.G. Curso de acustica em arquitetura. Madrid: Colegio Oficial de Arquitectos de Madrid, 1982 apud SALES, U.C. Mapeamento dos problemas gerados na associação entre sistemas de vedação e estrutura metálica e caracterização acústica e vibratória de painéis de vedação. 2001. 249 f. Dissertação (Mestrado em Engenharia Civil) Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, 2001.
- SANTIAGO, A.K. **O uso do sistema** *light steel framing* **associado a outros sistemas construtivos como fechamento vertical externo não estrutural**. 2008. 153 f. Dissertação (Mestrado em Engenharia Civil) Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, 2008.
- SHARP, B.H. **A study of techniques to increase the sound installation of building elements**. Wylie Laboratories Report WR 73-S, prepared for Department of Housing and Urban Development, Washington, DC, under contrct H-1095. 1973 apud BIES, D.A.; HANSEN, C.H. **Engineering Noise Control: Theory and Practice**. 3ª ed. London and New York: Spon Press, 2003. 719 p.
- _____. Prediction methods for the sound transmission of building elements. **Noise Control Engineering**, 11, 53-63. 1978 apud BIES, D.A.; HANSEN, C.H. **Engineering Noise Control: Theory and Practice**. 3ª ed. London and New York: Spon Press, 2003. 719 p.

SILVA, D.T. Estudo da isolação sonora em paredes e divisórias de diversas naturezas. 2000. 126 f. Dissertação (Mestrado em Engenharia Civil) — Programa de Pós-Graduação em Engenharia Civil, Universidade Federal de Santa Maria, Santa Maria, 2000.

TILLER, D.K.; MUSSER, A.; WANG, L.M.; RADIK, M.J. Combined effects of noise and temperature on human comfort and performance. **American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc** (ASHRAE), v. 16, part 2, p. 522-540, 2010.

VON KRÜGER, P.G. **Análise de painéis de vedação nas edificações em estrutura metálica**. 2000. 167 f. Dissertação (Mestrado em Engenharia Civil) – Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, 2000.

WESTPHAL, F.S; LAMBERTS, R. Simulação energética de edificações no programa EnergyPlus utilizando dados das normais climatológicas. In: ENCONTRO NACIONAL SOBRE CONFORTO NO AMBIENTE CONSTRUÍDO, 8., e ENCONTRO LATINO AMERICANO SOBRE CONFORTO NO AMBIENTE CONSTRUÍDO, 4., 2005, Maceió. Anais... ENCAC-ELACAC 2005: ANTAC, 2005, p. 2183-2192.

ANEXO

A - Notação utilizada pelas normas ISO

Segue a notação utilizada pelas normas ISO, mantida nessa pesquisa, com seus respectivos significados, exceto o índice de redução sonora ou *sound reduction index* (*R*), aqui chamado de perda na transmissão sonora ou *transmission loss* (*PT*).

- *PT*: índice de redução sonora (*sound reduction index*);
- D_{nT}: diferença padronizada de nível (*standardized level diference*), que é a diferença de nível de ruído entre dois ambientes separados por um elemento de construção em teste (muro, parede etc), quando o som é produzido em um dos ambientes e medido nos dois ambientes para cada banda de frequência no espectro medido;
- $D_{2m,nT}$: diferença padronizada de nível a 2 m (standardized level difference at 2 m);
- *L'_{nT}*: nível de pressão sonora de impacto padronizado (*standardized impact sound pressure level*), que é um parâmetro relacionado à transmissão sonora do elemento construtivo considerado (parede, piso etc), pois quanto maior é o seu valor, menor será a capacidade de isolamento do elemento.

Algumas variações desses parâmetros, que são obtidos quando os valores dos mesmos, dentro de sua categoria, são ponderados, por meio de uma curva padrão dada pelas normas ISO 717-1 e ISO 717-2 (ISO, 2013; ISO 2013a), e tomados como um número único. Esse procedimento facilita as comparações e restringe a escolha final entre um número menor de configurações (GERGES, 2000).

- PT_w : índice de redução sonora ponderado (*weighted sound reduction index*);
- $D_{nT,w}$: diferença padronizada de nível ponderada (weighted standardized level difference);
- $D_{2m,nT,w}$: diferença padronizada de nível ponderada a 2 m (weighted standardized level difference at 2 m);
- L'_{nT,w}: nível de pressão sonora de impacto ponderado padronizado (weighted standardized impact sound pressure level).

APÊNDICES

A – Roteiro para simulação térmica e acústica no Esp-r

A.1. Módulo para Simulação Térmica

O *software* ESP-r é uma ferramenta que pode ser aplicada na avaliação do desempenho térmico de edificações. É gratuito e sua instalação é feita a partir do *site* da *internet* www.esru esru.strath.ac.uk/software.htm.

Após a instalação, na página inicial do *software* são encontrados diversos menus, que possuem funções relacionadas aos arquivos do projeto a ser criado. Os menus mais utilizados para uma simulação térmica são os seguintes (Figura A.1):

- Database Maintenance,
- Open Existing,
- Create New,
- Browse/edit/simulate.

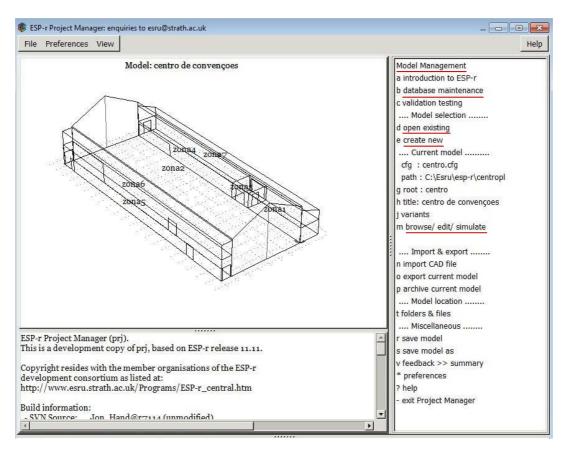


Figura A.1 – Página inicial do ESP-r

A.1.1. <u>Database maintenance</u>

O menu *database maintenance* é utilizado para criar, carregar, selecionar ou atualizar a base de dados que armazenam as informações sobre as condições climáticas (menu *annual climate*), propriedades de massa e térmicas dos materiais (menu *materials*), composição dos fechamentos (menu *constructions*) e propriedades óticas (menu *optical properties*).

Esses arquivos, que são encontrados na pasta de instalação do programa dentro das subpastas *climate* e *databases*, devem ser configurados previamente para conterem as condições climáticas e os materiais necessários para a simulação (Figura A.2).

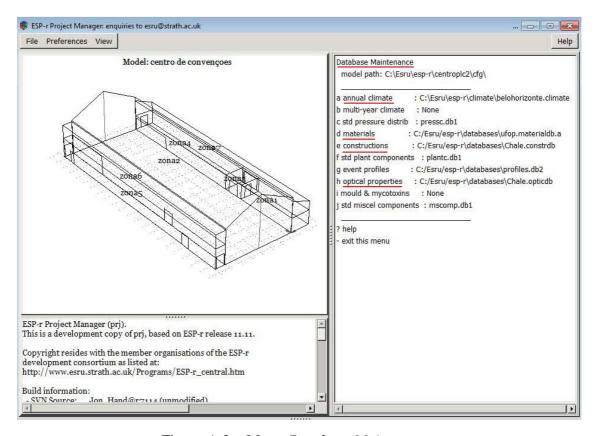


Figura A.2 – Menu *Database Maintenance*

A.1.2. *Open existing*

O menu *open existing* permite a abertura de algum projeto já criado anteriormente. É possível escolher um exemplo do ESP-r (*exemplar*) ou um arquivo próprio (*other*). Os exemplos são vários projetos que são carregados juntamente com a instalação do *software* e se encontram na pasta *training* (Figura A.3).

Quando um novo projeto é originado, o ESP-r cria uma pasta que possui duas subpastas, chamadas de *cfg* e *zones*. Na pasta *cfg* ficam armazenados os arquivos gerais do projeto, que são o arquivo de configuração (de extensão .*cfg*), de resposta (de extensão .*res*) e as planilhas geradas (de extensão .*grt* ou .*txt*). Na pasta *zones* ficam armazenados os arquivos relacionados a cada zona térmica do projeto, correspondentes à geometria (GEO), às propriedades de massa e térmicas dos materiais da zona (CON) e ao fluxo de ar e ganho de calor (OPR).

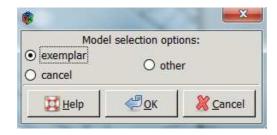


Figura A.3 – Abertura ou criação de um projeto no ESP-r

A.1.3. Create new

O menu *create new* é para a criação de um novo projeto ao qual é atribuído um nome, uma pequena descrição (não obrigatória) e um sistema de pasta para os arquivos correspondentes (uma única pasta para todos os arquivos criados pelo programa ou algumas subpastas para melhor organização). Ao final, esse menu solicita a latitude e a longitude do local a ser considerado para a edificação na simulação (Figura A.4).

Figura A.4 – Criação de um projeto no ESP-r

A.1.4. *Browse/edit/simulate*

O menu *browse/edit/simulate*, que está relacionado ao exemplo do ESP-r ou ao modelo que foi criado e que já está aberto dentro do projeto do usuário, disponibiliza ferramentas para a construção e caracterização do modelo (*composition*), em relação às suas propriedades geométricas, à escolha dos materiais a serem aplicados na edificação e aos detalhes operacionais (Figura A.5).

Também são disponibilizadas ferramentas para as simulações (*simulation*) e para a análise dos resultados (*results analysis*; Figura A.5).

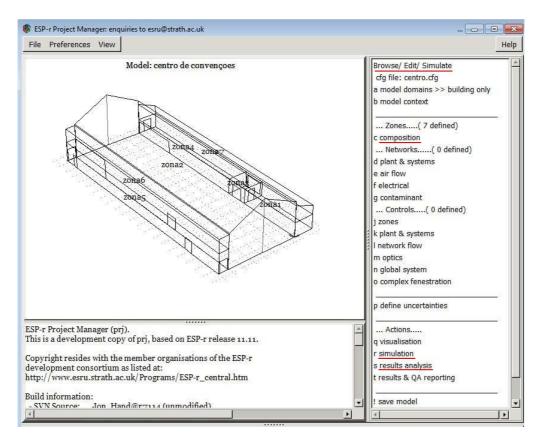


Figura A.5 – Menu *browse/edit/simulate*

Em composition são encontrados os menus geometry & attribution, construction materials e operational details, por meio dos quais são caracterizadas cada zona térmica do projeto (Figura A.6):

- a) *geometry & attribution*: por esse menu as zonas térmicas podem ser criadas com todas as suas propriedades geométricas, tais como área de paredes, pisos e tetos, volume de cada zona térmica, existência e localização de portas e janelas, e os dados da geometria das zonas térmicas são armazenados em um arquivo de extensão .*geo*;
- b) *construction materials*: por meio desse menu são atribuídos os tipos de fechamentos das superfícies de cada zona térmica (paredes, pisos e tetos) e os dados atribuídos às zonas térmicas são armazenados em um arquivo de extensão .*con*;
- c) operational details: aqui são atribuídos os detalhes operacionais das zonas térmicas do modelo, que são o número de renovações do ar e os ganhos casuais e permanentes de calor,

devidos à existência de pessoas, iluminação e equipamentos no interior de cada zona térmica, e a extensão dos arquivos criados por menu é .opr).

Esses arquivos, à medida que o projeto vai sendo caracterizado, vão sendo armazenados nas pastas GEO, CON e OPR, respectivamente.

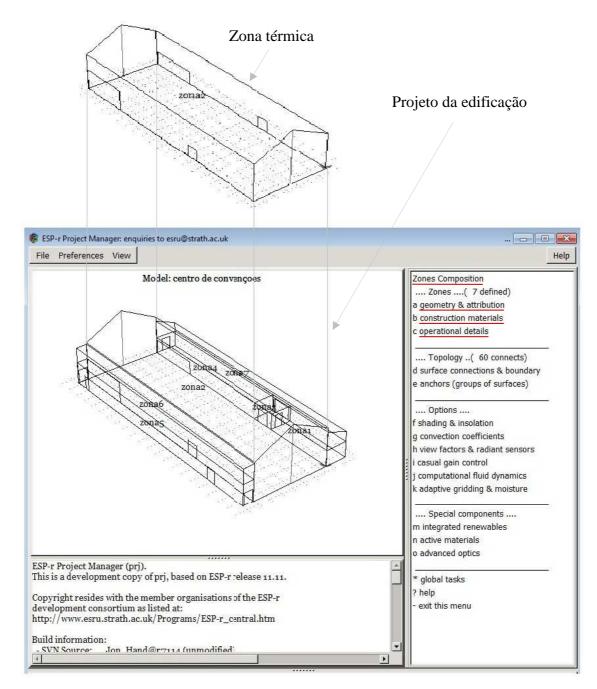


Figura A.6. Menu composition

O menu geometry & attribution possui diversas ferramentas e as principais são (Figura A.7):

- a) *vertex coordinates*: esse menu disponibiliza a lista das coordenadas dos vértices de toda a edificação projetada e por ele é possível alterar a geometria do modelo (tamanho de paredes, portas e janelas), alterando os valores dessas coordenadas;
- b) *surface list & edges*: esse menu disponibiliza uma lista que mostra cada fechamento e seus vértices correspondentes definindo tamanho e posições de paredes, piso, cobertura, portas e janelas;
- c) *surface & attributes*: por meio desse menu é possível escolher o tipo de fechamento e a condição de contorno de cada superfície do fechamento, bem como adicionar aberturas (portas e janelas) nas paredes da edificação projetada.

O menu *construction materials* permite atribuir a cada fechamento de cada zona térmica o seu tipo de superfície (se opaca ou transparente) e o seu material (Figura A.8).

No menu *operational details* estão os controles do fluxo de ar (taxas de ventilação e de infiltração) e do ganho de calor casual devido à presença de pessoas, iluminação e equipamentos no interior de cada zona térmica (Figura A.9).

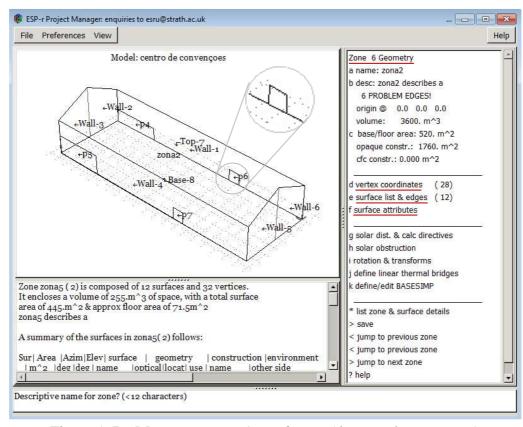


Figura A.7 – Menu *geometry & attribution* (destacando uma porta)

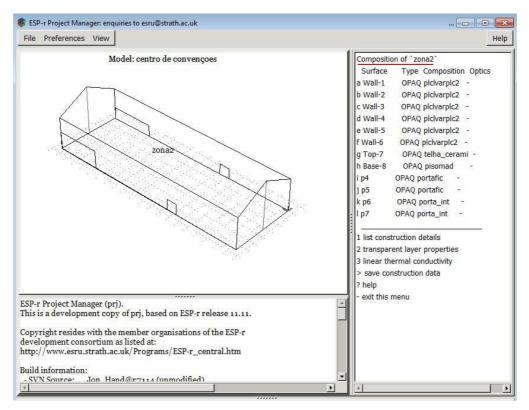


Figura A.8 – Menu construction materials

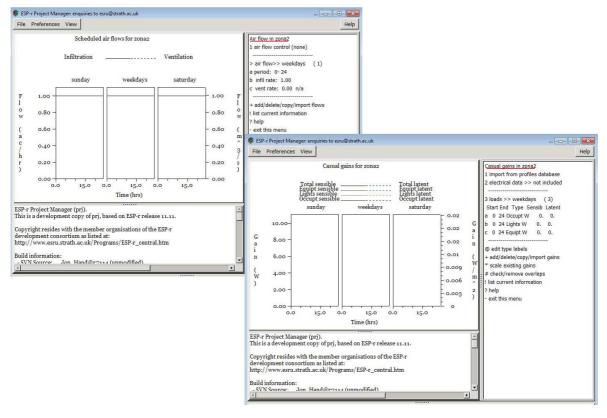


Figura A.9 – Menu operational details

De volta a página do *browse/edit/simulate* tem-se o menu *simulate*, por onde são realizadas as simulações para a edificação do modelo, para o período e clima desejados (Figuras A.5 e A.10).

Como arquivo de resposta é criado o *arquivo.res*, que gera um outro arquivo de saída dos resultados que tem como padrão o nome *libb*.

Para a leitura dos arquivos de saída, é acessado o menu *results analysis*, que gera as tabelas com os resultados desejados, as quais podem ser lidas por programas comuns (editores de texto e planilhas eletrônicas; Figura A.11).

Para a avaliação de desempenho térmico é necessária a variação temporal da temperatura e da umidade externa e no interior dos recintos. Essas variáveis podem ser selecionadas para ser criado o arquivo de resposta, bem como as zonas a serem avaliadas e o período do ano.

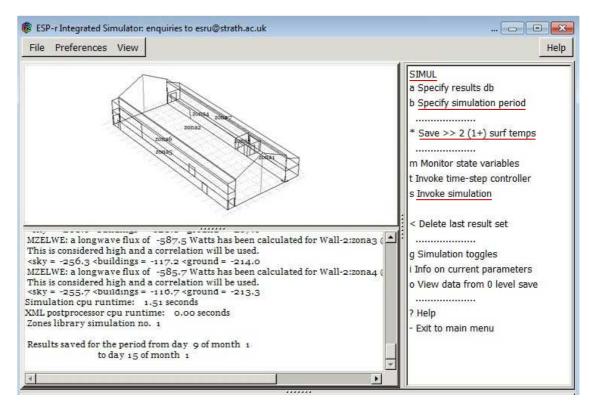


Figura A.10 – Menu *simulate*

```
# Timestep performance metrics.
# Lib: libbl: Results for centro
# Period: Thu-13-Jan@00h30(2000) to Thu-13-Jan@23h30(2000) : sim@60m, output@60m
Time (degC) zona2dbT(degC) (-) zona2RH(-)
00h30 21.85 20.61 83.00 90.75
01h30 21.60 20.27 84.00 91.71
02h30 21.30 19.97 87.00 93.47
03h30 21.15 19.71
                        87.00 95.29
04h30 21.15 19.45
                        86.50 96.46
05h30 21.45 19.24
                        84.50 97.29
06h30 22.30 19.27
                        80.00 96.69
07h30 23.50 19.63
                        74.00 94.21
08h30 24.60 20.82
                        68.50 87.13
09h30 25.50 22.50
                        64.50
10h30 26.20
               23.52
                        62.00
11h30 26.85 24.54
                        59.50 68.61
12h30 27.25
                26.01
13h30 27.50
               27.17
                        58.00
14h30 27.
            50
               28.00
15h30 26.85
                        60.50
16h30 26.10 28.10
17h30 25.45
               27.00
18h30 24.65
               26.01
19h30 23.85 24.49
20h30 23.15 22.71
                        78.50
21h30 22.65 21.87 80.50 84.32
22h30 22.35 21.33 82.00 87.13
23h30 22.05 20.60 84.00 91.25
```

Figura A.11 – Resultados de uma simulação térmica

A.2. Módulo para Simulação Acústica

Além do módulo térmico, o *software* ESP-r disponibiliza o modulo acústico, que é executado com o arquivo *aco.bin*, destinado ao cálculo do tempo de reverberação das zonas térmicas da edificação.

Na página do módulo acústico estão os seguintes menus que são relacionados à abertura dos arquivos de dados para a realização da simulação acústica (Figura A.12):

- a) *Problem*: onde é indicado o arquivo de extensão .cfg que indica o projeto a ser simulado;
- b) *BCF*: nesse local é indicado o arquivo a ser carregado de extensão *.bcf*, que contém informações das propriedades acústicas dos materiais empregados nos fechamentos (coeficientes de absorção sonora para as frequências de banda de terço de oitava, que são 100, 125, 160, 200, 250, 315, 400, 500, 680, 800, 1000, 1250, 1600, 2000, 2500, 3150 e 4000 (Hz)).
- c) ACO: onde é indicado o arquivo que guarda informações sobre quantidade e tipo de mobiliário e presença de pessoas no interior do ambiente a ser avaliado.

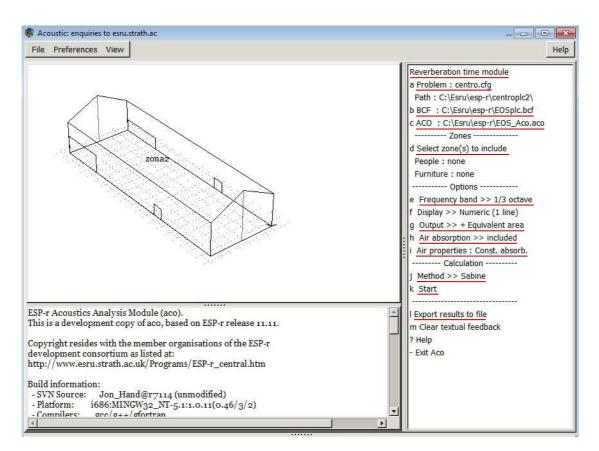


Figura A.12 – Menu do módulo acústico

Os outros principais menus do módulo acústico estão descritos a seguir:

- a) Select zone(s) to include: menu utilizado para a escolha das zonas a serem simuladas e nos campos people e funiture encontram-se as informações sobre pessoas e mobiliário existentes na(s) zona(s) térmica(s) escolhida(s);
- b) *Frequency band*: opção para escolha das frequências a serem exibidas nos resultados, se banda de oitava ou banda de terço de oitava;
- c) Air absorption: menu para escolher se a absorção do ar deve ser considerada ou não;
- d) Air properties: menu para escolher a temperatura e umidade do modelo a ser simulado. A temperatura e umidade podem ser digitadas ou aproveitadas do arquivo de resposta (.res) gerado no módulo acústico. A partir desse item ocorre a integração entre a simulação térmica e a acústica;
- e) *Method*: menu para a escolha de quais métodos de cálculo serão utilizados na simulação (Sabine, Millington ou Eyring ou todos os métodos ao mesmo tempo);
- f) Calculation: menu para a simulação propriamente dita e geração dos resultados;

g) *Export results to file*: opção para a exportação dos resultados em forma de tabelas, que podem ser lidas por programas comuns (editores de texto e planilhas eletrônicas; Figura A.13).

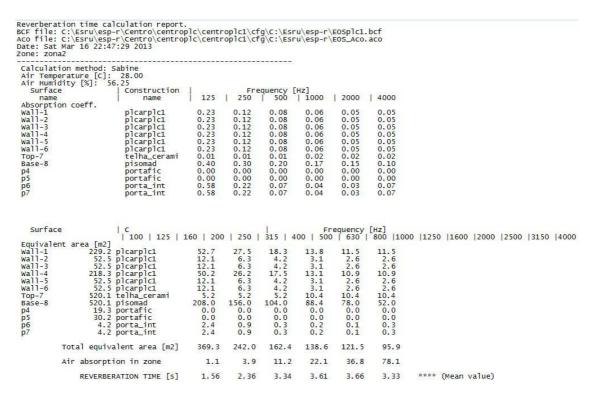


Figura A.13 – Resultados de uma simulação no módulo acústico

O *software* ESP-r permite uma análise térmica integrada em toda a edificação, pois cada zona é caracterizada e considerada na simulação, podendo-se selecionar os resultados apenas para as zonas térmicas de interesse. O programa permite ainda a integração entre a simulação térmica e a acústica, pois o tempo de reverberação é obtido aplicando em seu cálculo os resultados da simulação térmica.

B – Tabelas de valores de T_i (°C) e TR (s)

Tabela B.1. T_i (°C) e TR (s) - Edifício I - dormitório - 1 ren/h; Sabine (1000 Hz)

(continua)

Tabe	la B. I	$I.I_i$ (°C) e	IK (s) - E	airici	01-	uorm	torio	- 1 16	3H/H;	Savii	16 (10	и и	.L)				(conti	nua)
Tempo (h)	Temperatura externa (°C)	T _i - PLC(10)-ar(75)-PLC(10)	TR - PLC(10)-ar(75)-PLC(10)	T _i - PLC(10)-LVI(50)-ar(25)-PLC(10)	TR - PLC(10)-LVI(50)-ar(25)-PLC(10)	T _i - PLC(12)-ar(90)-PLC(12)	TR - PLC(12)-ar(90)-PLC(12)	T _i - PLC(12)-LVI(50)-ar(40)-PLC(12)	TR - PLC(12)-LVI(50)-ar(40)-PLC(12)	T ₁ - PLC(100)	TR - PLC(100)	T _i - GEA(12,5)-ar(75)-GEA(12,5)	TR - GEA(12,5)-ar(75)-GEA(12,5)	7,- GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	TR - GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	T _/ - GEA(15)-ar(90)-GEA(15)	TR- GEA(15)-ar(90)-GEA(15)	T _i - GEA(15)-LVI(50)-ar(40)-GEA(15)	TR - GEA(15)-LVI(50)-ar(40)-GEA(15)	T _i - GEA(100)	TR - GEA(100)
00h30	21,9	19,0	2,53	16,0	2,57	18,9	2,53	16,0	2,57	19,7	2,52	18,5	2,88	15,7	2,92	18,4	2,88	15,7	2,92	18,6	2,88
01h30	21,6	18,7	2,53	15,8	2,57	18,6	2,53	15,8	2,57	19,3	2,53	18,2	2,88	15,5	2,92	18,1	2,88	15,5	2,92	18,2	2,88
02h30 03h30	21,3 21,2	18,3 18,0	2,54 2,54	15,5 15,4	2,57 2,57	18,3 17,9	2,54 2,54	15,6 15,4	2,57 2,57	19,0 18,6	2,53 2,53	17,9 17,6	2,89	15,3 15,1	2,93 2,93	17,8 17,5	2,89 2,89	15,3 15,1	2,93 2,93	17,9 17,6	2,89 2,89
04h30	21,2	17,7	2,55	15,2	2,58	17,6	2,55	15,2	2,58	18,4	2,54	17,3	2,89	15,0	2,93	17,3	2,90	15,0	2,93	17,3	2,89
05h30	21,5	17,5	2,55	15,1	2,58	17,4	2,55	15,1	2,58	18,2	2,54	17,1	2,90	14,9	2,93	17,0	2,90	14,9	2,93	17,1	2,90
06h30 07h30	22,3 23,5	17,5 17,6	2,55 2,55	15,1 15,2	2,58 2,58	17,4 17,5	2,55 2,55	15,1 15,2	2,58 2,58	18,1	2,54 2,54	17,1 17,3	2,90	14,9 15,0	2,93 2,93	17,0 17,2	2,90 2,90	14,9 15,0	2,93 2,93	17,1 17,1	2,90
08h30	24,6	18,3	2,54	15,5	2,57	18,2	2,53	15,4	2,57	18,1 18,1	2,54	18,5	2,88	15,4	2,93	18,1	2,88	15,4	2,93	17,1	2,89
09h30	25,5	22,5	2,49	16,3	2,56	21,6	2,50	16,1	2,57	18,4	2,54	22,9	2,82	16,5	2,91	21,9	2,84	16,3	2,91	18,3	2,88
10h30	26,2	26,0	2,46	17,6	2,55	24,8	2,47	17,1	2,55	19,1	2,53	24,9	2,80	17,8	2,89	24,3	2,80	17,6	2,89	20,0	2,86
11h30 12h30	26,9 27,3	24,9 25,2	2,47	18,4 18,4	2,54 2,54	24,5 24,6	2,47 2,47	17,9 18,1	2,54 2,54	20,0	2,52 2,51	23,1 24,4	2,82	18,1 18,0	2,88 2,88	22,9	2,82	18,1 18,0	2,88	21,1 21,4	2,85 2,84
13h30	27,5	26,0	2,46	18,4	2,54	25,3	2,47	18,3	2,54	21,2	2,51	25,2	2,79	18,2	2,88	24,5	2,80	18,1	2,88	21,9	2,84
14h30	27,5	25,3	2,47	18,5	2,54	24,9	2,47	18,4	2,54	21,6	2,50	23,6	2,81	18,3	2,88	23,4	2,82	18,2	2,88	22,1	2,83
15h30 16h30	26,9 26,1	24,9 24,4	2,47 2,47	18,4 18,3	2,54 2,54	24,5 24,1	2,47 2,48	18,3 18,2	2,54 2,54	21,8 21,8	2,50 2,50	23,8 23,5	2,81 2,81	18,1 18,0	2,88	23,4 23,1	2,82 2,82	18,1 18,0	2,88 2,88	22,0 21,9	2,83
17h30	25,5	23,8	2,48	18,2	2,54	23,5	2,48	18,1	2,54	21,8	2,50	22,7	2,82	17,9	2,89	22,4	2,83	17,8	2,89	21,6	2,84
18h30	24,7	23,1	2,49	17,9	2,54	22,9	2,49	17,8	2,54	21,6	2,50	22,1	2,83	17,6	2,89	21,9	2,83	17,6	2,89	21,3	2,84
19h30 20h30	23,9 23,2	22,0	2,50 2,51	17,5 17,1	2,55 2,55	21,9	2,50 2,51	17,4 17,0	2,55 2,55	21,3	2,50 2,51	21,0 19,9	2,84 2,86	17,2 16,7	2,90 2,90	20,9 19,8	2,85 2,86	17,2 16,7	2,90 2,90	20,7	2,85 2,85
21h30	22,7	19,9	2,52	16,6	2,56	19,9	2,52	16,6	2,56	20,5	2,51	19,3	2,86	16,3	2,91	19,2	2,87	16,3	2,91	19,5	2,86
22h30 23h30	22,4 22,1	19,4 19,0	2,52 2,53	16,3 16,1	2,56 2,57	19,4 18,9	2,52 2,53	16,3 16,1	2,56 2,57	20,0 19,6	2,52 2,52	18,9 18,5	2,87 2,88	16,0 15,8	2,91 2,92	18,8 18,4	2,87 2,88	16,0 15,8	2,91 2,92	19,0 18,6	2,87 2,88
Tempo (h)	Temperatura externa (°C)	T _i - PMC(75)-ar(75)-PMC(75)	<i>TR</i> - PMC(75)-ar(75)-PMC(75)	T _i - PMC(75)-LVI(50)-ar(25)-PMC(75)	7R - PMC(75)-LVI(50)-ar(25)-PMC(75)	T _i - PMC(225)	<i>TR</i> - PMC(225)	T ₁ - CCA(100)-ar(75)-CCA(100)	7R - CCA(100)-ar(75)-CCA(100)	T ₁ - CCA(100)-LVI(50)-ar(25)-CCA(100)	TR - CCA(100)-LVI(50)-ar(25)-CCA(100)	7, - CCA(275)	TR - CCA(275)	T _i - EPS(100)-ar(75)-EPS(100)	<i>TR</i> - EPS(100)-ar(75)-EPS(100)	T _i - EPS(100)-LVI(50)-ar(25)-EPS(100)	TR - EPS(100)-LVI(50)-ar(25)-EPS(100)	7, - EPS(275)	<i>TR</i> - EPS(275)	7, - ATC(150)	<i>TR</i> - ATC(150)
00h30	21,9	22,3	4,71	16,9	4,89	22,8	4,69	16,6	1,23	15,6	1,24	16,1	1,24	14,7	4,97	14,5	4,98	14,3	4,98	21,0	4,75
01h30 02h30	21,6 21,3	22,0 21,6	4,72 4,73	16,8 16,7	4,89 4,90	22,6 22,3	4,70 4,71	16,5 16,3	1,23 1,23	15,4 15,3	1,24 1,24	16,0 15,8	1,24	14,6 14,5	4,97 4,98	14,4	4,98 4,98	14,2 14,1	4,99 4,99	20,7	4,76 4,77
03h30	21,2	21,3	4,74	16,6	4,90	22,0	4,72	16,1	1,24	15,2	1,24	15,7	1,24	14,4	4,98	14,2	4,99	13,9	5,00	20,0	4,78
04h30	21,2	21,0	4,75	16,5	4,90	21,8	4,73	15,9	1,24	15,1	1,24	15,6	1,24	14,4	4,98	14,1	4,99	13,9	5,00	19,7	4,79
05h30 06h30	21,5 22,3	20,8	4,76 4,76	16,5 16,5	4,90 4,90	21,6 21,5	4,73 4,74	15,9 15,9	1,24 1,24	15,0 15,0	1,24 1,24	15,6 15,6	1,24 1,24	14,3 14,4	4,98 4,98	14,1 14,2	4,99 4,99	13,8 13,9	5,00 5,00	19,5 19,4	4,79 4,80
07h30	23,5	20,5	4,77	16,6	4,90	21,4	4,74	15,9	1,24	15,1	1,24	15,7	1,24	14,5	4,98	14,3	4,98	14,0	5,00	19,4	4,80
08h30	24,6	20,5	4,77	16,8	4,89	21,4	4,74	16,0	1,24	15,2	1,24	15,8	1,24	14,7	4,97	14,5	4,98	14,1	4,99	19,4	4,80
09h30 10h30	25,5 26,2	20,6	4,77 4,76	16,9 17,1	4,89 4,88	21,5	4,74 4,74	16,2 16,5	1,24 1,23	15,4 15,7	1,24 1,24	16,0 16,2	1,24	14,8 15,0	4,97 4,96	14,6 14,9	4,97 4,96	14,3 14,5	4,99 4,98	19,5 20,0	4,80 4,78
11h30	26,9	21,3	4,75	17,1	4,88	21,9	4,73	16,7	1,23	15,7	1,24	16,5	1,23	15,0	4,95	15,0	4,96	14,7	4,97	20,6	4,77
	20,9			4	==	22.2	4 72	17,0	1,23	16,0	1,24	16,7	1,23	15,4	4,95	15,2	4,95	14,8	4,97	21,2	4,75
12h30	27,3	21,8	4,73	17,3	4,87	22,3	4,72				40.	400				4	40-				
12h30 13h30	27,3 27,5	22,3	4,72	17,4	4,87	22,6	4,71	17,3	1,23	16,2	1,24	16,8 17.0	1,23	15,5 15.6	4,94 4 94	15,3 15.4	4,95 4,95	15,0	4,96	21,6	4,74
12h30	27,3										1,24 1,23 1,23	16,8 17,0 17,0	1,23 1,23 1,23	15,5 15,6 15,6	4,94 4,94 4,94	15,3 15,4 15,4	4,95 4,95 4,95				
12h30 13h30 14h30 15h30 16h30	27,3 27,5 27,5 26,9 26,1	22,3 22,7 22,9 23,1	4,72 4,71 4,70 4,69	17,4 17,5 17,5 17,5	4,87 4,87 4,87 4,87	22,6 23,0 23,2 23,3	4,71 4,70 4,69 4,69	17,3 17,5 17,6 17,7	1,23 1,23 1,23 1,23	16,2 16,3 16,3 16,4	1,23 1,23 1,23	17,0 17,0 17,1	1,23 1,23 1,23	15,6 15,6 15,5	4,94 4,94 4,94	15,4 15,4 15,3	4,95 4,95 4,95	15,0 15,1 15,1 15,1	4,96 4,96 4,95 4,96	21,6 22,0 22,2 22,3	4,74 4,73 4,72 4,71
12h30 13h30 14h30 15h30 16h30 17h30	27,3 27,5 27,5 26,9 26,1 25,5	22,3 22,7 22,9 23,1 23,2	4,72 4,71 4,70 4,69 4,68	17,4 17,5 17,5 17,5 17,5	4,87 4,87 4,87 4,87 4,87	22,6 23,0 23,2 23,3 23,4	4,71 4,70 4,69 4,69 4,68	17,3 17,5 17,6 17,7 17,8	1,23 1,23 1,23 1,23 1,23	16,2 16,3 16,3 16,4 16,4	1,23 1,23 1,23 1,23	17,0 17,0 17,1 17,1	1,23 1,23 1,23 1,23	15,6 15,6 15,5 15,5	4,94 4,94 4,94 4,94	15,4 15,4 15,3 15,3	4,95 4,95 4,95 4,95	15,0 15,1 15,1 15,1 15,1	4,96 4,96 4,95 4,96 4,96	21,6 22,0 22,2 22,3 22,3	4,74 4,73 4,72 4,71 4,71
12h30 13h30 14h30 15h30 16h30	27,3 27,5 27,5 26,9 26,1	22,3 22,7 22,9 23,1	4,72 4,71 4,70 4,69	17,4 17,5 17,5 17,5	4,87 4,87 4,87 4,87	22,6 23,0 23,2 23,3	4,71 4,70 4,69 4,69	17,3 17,5 17,6 17,7	1,23 1,23 1,23 1,23	16,2 16,3 16,3 16,4	1,23 1,23 1,23	17,0 17,0 17,1	1,23 1,23 1,23	15,6 15,6 15,5	4,94 4,94 4,94	15,4 15,4 15,3	4,95 4,95 4,95	15,0 15,1 15,1 15,1	4,96 4,96 4,95 4,96	21,6 22,0 22,2 22,3	4,74 4,73 4,72 4,71
12h30 13h30 14h30 15h30 16h30 17h30 18h30 19h30 20h30	27,3 27,5 27,5 26,9 26,1 25,5 24,7 23,9 23,2	22,3 22,7 22,9 23,1 23,2 23,2 23,0 22,9	4,72 4,71 4,70 4,69 4,68 4,68 4,69 4,69	17,4 17,5 17,5 17,5 17,5 17,4 17,2 17,1	4,87 4,87 4,87 4,87 4,87 4,87 4,88 4,88	22,6 23,0 23,2 23,3 23,4 23,4 23,3 23,1	4,71 4,70 4,69 4,69 4,68 4,68 4,68 4,68	17,3 17,5 17,6 17,7 17,8 17,7 17,5 17,3	1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23	16,2 16,3 16,4 16,4 16,3 16,2 16,0	1,23 1,23 1,23 1,23 1,23 1,24 1,24	17,0 17,0 17,1 17,1 17,0 16,8 16,6	1,23 1,23 1,23 1,23 1,23 1,23 1,23	15,6 15,6 15,5 15,5 15,4 15,2 15,1	4,94 4,94 4,94 4,94 4,95 4,95	15,4 15,4 15,3 15,3 15,2 15,0 14,9	4,95 4,95 4,95 4,95 4,95 4,96 4,96	15,0 15,1 15,1 15,1 15,1 15,0 14,8 14,7	4,96 4,95 4,96 4,96 4,96 4,96 4,97 4,97	21,6 22,0 22,2 22,3 22,3 22,2 22,0 21,8	4,74 4,73 4,72 4,71 4,71 4,71 4,72 4,72
12h30 13h30 14h30 15h30 16h30 17h30 18h30 19h30 20h30 21h30	27,3 27,5 27,5 26,9 26,1 25,5 24,7 23,9 23,2 22,7	22,3 22,7 22,9 23,1 23,2 23,2 23,0 22,9 22,6	4,72 4,71 4,70 4,69 4,68 4,68 4,69 4,69 4,70	17,4 17,5 17,5 17,5 17,5 17,4 17,2 17,1 17,0	4,87 4,87 4,87 4,87 4,87 4,87 4,88 4,88	22,6 23,0 23,2 23,3 23,4 23,4 23,3 23,1 22,9	4,71 4,70 4,69 4,69 4,68 4,68 4,68 4,68 4,68	17,3 17,5 17,6 17,7 17,8 17,7 17,5 17,3 17,1	1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23	16,2 16,3 16,4 16,4 16,4 16,3 16,2 16,0 15,8	1,23 1,23 1,23 1,23 1,23 1,24 1,24 1,24	17,0 17,0 17,1 17,1 17,0 16,8 16,6	1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23	15,6 15,6 15,5 15,5 15,4 15,2 15,1 14,9	4,94 4,94 4,94 4,94 4,95 4,96 4,96	15,4 15,3 15,3 15,2 15,0 14,9 14,7	4,95 4,95 4,95 4,95 4,95 4,96 4,96 4,97	15,0 15,1 15,1 15,1 15,1 15,0 14,8 14,7 14,5	4,96 4,95 4,96 4,96 4,96 4,96 4,97 4,97 4,98	21,6 22,0 22,2 22,3 22,3 22,2 22,0 21,8 21,5	4,74 4,73 4,72 4,71 4,71 4,71 4,72 4,72 4,73
12h30 13h30 14h30 15h30 16h30 17h30 18h30 19h30 20h30	27,3 27,5 27,5 26,9 26,1 25,5 24,7 23,9 23,2	22,3 22,7 22,9 23,1 23,2 23,2 23,0 22,9	4,72 4,71 4,70 4,69 4,68 4,68 4,69 4,69	17,4 17,5 17,5 17,5 17,5 17,4 17,2 17,1	4,87 4,87 4,87 4,87 4,87 4,87 4,88 4,88	22,6 23,0 23,2 23,3 23,4 23,4 23,3 23,1	4,71 4,70 4,69 4,69 4,68 4,68 4,68 4,68	17,3 17,5 17,6 17,7 17,8 17,7 17,5 17,3	1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23	16,2 16,3 16,4 16,4 16,3 16,2 16,0	1,23 1,23 1,23 1,23 1,23 1,24 1,24	17,0 17,0 17,1 17,1 17,0 16,8 16,6	1,23 1,23 1,23 1,23 1,23 1,23 1,23	15,6 15,6 15,5 15,5 15,4 15,2 15,1	4,94 4,94 4,94 4,94 4,95 4,95	15,4 15,4 15,3 15,3 15,2 15,0 14,9	4,95 4,95 4,95 4,95 4,95 4,96 4,96	15,0 15,1 15,1 15,1 15,1 15,0 14,8 14,7	4,96 4,95 4,96 4,96 4,96 4,96 4,97 4,97	21,6 22,0 22,2 22,3 22,3 22,2 22,0 21,8	4,74 4,73 4,72 4,71 4,71 4,71 4,72 4,72

Tabela B.1. T_i (°C) e TR (s) - Edifício I - dormitório - 1 ren/h; Sabine (1000 Hz)

(conclusão)

Tabe	ıu D.1	1	- / -	(-, –		· - ·				,,		(-)		,				,	onclu	
Tempo (h)	Temperatura externa (°C)	T _i - PLC(10)-ar(75)-GEA(12,5)	TR - PLC(10)-ar(75)-GEA(12,5)	T ₁ - PLC(10)-LVI(50)-ar(25)-GEA(12,5)	TR - PLC(10)-LVI(50)-ar(25)-GEA(12,5)	T _i - PLC(12)-ar(90)-GEA(15)	TR - PLC(12)-ar(90)-GEA(15)	T, - PLC(12)-LVI(50)-ar(40)-GEA(15)	TR - PLC(12)-LVI(50)-ar(40)-GEA(15)	7, - PMC(75)-ar(75)-PLC(10)	TR - PMC(75)-ar(75)-PLC(10)	T _i - PMC(75)-LVI(50)-ar(25)-PLC(10)	TR - PMC(75)-LVI(50)-ar(25)-PLC(10)	T _i - PMC(75)-ar(75)-GEA(12,5)	TR - PMC(75)-ar(75)-GEA(12,5)	T _i - PMC(75)-LVI(50)-ar(25)-GEA(12,5)	TR - PMC(75)-LVI(50)-ar(25)-GEA(12,5)	T ₁ - PMC(225)	<i>TR</i> - PMC(225	7,- CCA(100)-ar(75)-PLC(10)	7R - CCA(100)-ar(75)-PLC(10)
00h30	21,9	18,8	2,87	15,9	2,92	18,7	2,87	15,9	2,92	21,5	2,50 2,51	16,8	2,56	21,3	2,84	16,8	2,90	22,8	4,69	17,6	2,55
01h30 02h30	21,6 21,3	18,5 18,2	2,88 2,88	15,7 15,5	2,92 2,92	18,4 18,1	2,88 2,88	15,7 15,5	2,92 2,92	21,0	2,51 2,51	16,6 16,4	2,56 2,56	20,8	2,85	16,5 16,3	2,91 2,91	22,6 22,3	4,70 4,71	17,3 17,0	2,55 2,55
03h30	21,2	17,8	2,89	15,3	2,93	17,8	2,89	15,3	2,93	20,0	2,52	16,2	2,56	19,9	2,86	16,1	2,91	22,0	4,72	16,7	2,56
04h30 05h30	21,2 21,5	17,5 17,3	2,89	15,1 15,0	2,93 2,93	17,5 17,3	2,89	15,1 15,0	2,93 2,93	19,7 19,4	2,52 2,52	16,0 15,9	2,57	19,5 19,3	2,86 2,87	15,9 15,8	2,92	21,8 21,6	4,73 4,73	16,5 16,4	2,56 2,56
06h30	22,3	17,3	2,89	15,0	2,93	17,2	2,90	15,0	2,93	19,3	2,53	15,9	2,57	19,1	2,87	15,8	2,92	21,5	4,74	16,3	2,56
07h30 08h30	23,5 24,6	17,4 18,5	2,89 2,88	15,1 15,5	2,93 2,92	17,3 18,1	2,89 2,88	15,1 15,4	2,93	19,3 19,4	2,53 2,53	15,9 16,0	2,57 2,57	19,1 19,2	2,87 2,87	15,8 15,9	2,92 2,92	21,4 21,4	4,74 4,74	16,3 16,5	2,56 2,56
09h30	25,5	23,3	2,82	16,5	2,91	22,1	2,83	16,2	2,91	19,9	2,52	16,2	2,56	19,9	2,86	16,2	2,91	21,5	4,74	16,8	2,56
10h30 11h30	26,2 26,9	26,3 24,5	2,78 2,80	18,0 18,7	2,89	25,5 24,3	2,79 2,81	17,5 18,2	2,89 2,88	21,2 22,5	2,51 2,50	16,6 17,0	2,56 2,55	21,2 22,5	2,84	16,6 17,0	2,91 2,90	21,6 21,9	4,74 4,73	17,7 18,7	2,55 2,53
12h30	27,3	25,1	2,79	18,5	2,88	24,5	2,80	18,3	2,88	23,3	2,49	17,0	2,55	23,2	2,82	17,0	2,89	22,3	4,73	19,3	2,53
13h30	27,5	26,1	2,78	18,5	2,88	25,3 24,7	2,79	18,4 18,4	2,88	23,9	2,48	17,7	2,55	23,9	2,81	17,7	2,89	22,6	4,71	19,7 20,0	2,52
14h30 15h30	27,5 26,9	24,9 24,6	2,80	18,6 18,5	2,88	24,7	2,80 2,81	18,3	2,88 2,88	24,4	2,48	17,9 18,0	2,54 2,54	24,3 24,5	2,80	18,0 18,1	2,88	23,0	4,70 4,69	20,0	2,52 2,52
16h30	26,1	24,2	2,81	18,3	2,88	23,8	2,81	18,2	2,88	24,6	2,47	18,1	2,54	24,5	2,80	18,1	2,88	23,3	4,69	20,0	2,52
17h30 18h30	25,5 24,7	23,5 22,9	2,81 2,82	18,1 17,9	2,88	23,3 22,6	2,82 2,82	18,0 17,8	2,88 2,89	24,5 24,2	2,47	18,1 18,0	2,54 2,54	24,3 24,0	2,80	18,1 18,0	2,88	23,4	4,68 4,68	19,9 19,6	2,52 2,52
19h30	23,9	21,7	2,84	17,4	2,89	21,5	2,84	17,4	2,89	23,7	2,48	17,8	2,54	23,5	2,81	17,7	2,89	23,3	4,68	19,2	2,53
20h30 21h30	23,2	20,4 19,7	2,85 2,86	16,9 16,5	2,90 2,91	20,3 19,6	2,85 2,86	16,9 16,5	2,90 2,91	23,1 22,5	2,49 2,49	17,5 17,2	2,55 2,55	22,9 22,3	2,82 2,83	17,4 17,2	2,89	23,1 22,9	4,68 4,69	18,8 18,4	2,53 2,54
22h30	22,4	19,2	2,87	16,2	2,91	19,1	2,87	16,2	2,91	21,9	2,50	17,0	2,55	21,7	2,83	16,9	2,90	22,7	4,70	18,0	2,54
23h30	22,1	18,8	2,87	16,0	2,92	18,7	2,87	15,9	2,92	21,4	2,50	16,8	2,56	21,2	2,84	16,7	2,90	22,5	4,70	17,7	2,55
Tempo (h)	Temperatura externa (°C)	CCA(100)-LVI(50)-ar(25)-PLC(10)	CCA(100)-LVI(50)-ar(25)-PLC(10)	7, - CCA(100)-ar(75)-GEA(12,5)	TR - CCA(100)-ar(75)-GEA(12,5)	CCA(100)-LVI(50)-ar(25)-GEA(12,5)	CCA(100)-LVI(50)-ar(25)-GEA(12,5)	T, - CCA(100)	TR - CCA(100)	EPS(100)-ar(75)-PLC(10)	7R - EPS(100)-ar(75)-PLC(10)	EPS(100)-LVI(50)-ar(25)-PLC(10)	EPS(100)-LVI(50)-ar(25)-PLC(10)	EPS(100)-ar(75)-GEA(12,5)	7R - EPS(100)-ar(75)-GEA(12,5)	EPS(100)-LVI(50)-ar(25)-GEA(12,5)	EPS(100)-LVI(50)-ar(25)-GEA(12,5)	<i>T_i-</i> EPS(100)	<i>TR</i> - EPS(100)	7, - ATC(150)	<i>TR</i> - ATC(150)
		Т,-	TR-		·	T,-	TR-	47.0		T _i -	-	T _i -	TR-	Τ,-		T _i -	TR-				
00h30 01h30	21,9 21,6			17,5 17,2	2,89 2,90			17,6 17,3	1,23 1,23	13,9 13,7	2,59 2,59			13,6 13,6 13,6	26,55 29,55 29,55			15,6 15,4	4,94 4,94	21,0 20,7	4,75 4,76
01h30 02h30	21,9 21,6 21,3	15,9 15,7 15,5	2,57 2,57 2,57	17,5 17,2 16,9	2,89 2,90 2,90	15,8 15,6 15,4	2,92 2,92 2,92 2,92	17,3 17,0	1,23 1,23 1,23	13,9 13,7 13,4	2,59 2,59 2,60	13,8 13,7 13,5	2,59 2,59 2,60	13,8 13,6 13,3	2,95 2,95 2,95	13,8 13,6 13,4	2,95 2,95 2,95	15,6 15,4 15,3	4,94 4,94 4,95	21,0 20,7 20,3	4,75 4,76 4,77
01h30 02h30 03h30 04h30	21,9 21,6 21,3 21,2 21,2	15,9 15,7	2,57 2,57 2,57 2,58 2,58	17,5 17,2 16,9 16,6 16,4	2,89 2,90 2,90 2,91 2,91	15,8 15,6 15,4 15,2 15,1	2,92 2,92 2,92 2,93 2,93	17,3	1,23 1,23 1,23 1,23 1,23	13,9 13,7	2,59 2,59 2,60 2,60 2,60	13,8 13,7 13,5 13,3 13,1	2,59 2,59 2,60 2,60 2,60	13,8 13,6 13,3 13,0 12,9	2,95 2,95 2,95 2,96 2,96	13,8 13,6 13,4 13,2 13,0	2,95 2,95 2,95 2,95 2,96 2,96	15,6 15,4	4,94 4,94 4,95 4,96 4,96	21,0 20,7	4,75 4,76 4,77 4,78 4,79
01h30 02h30 03h30 04h30 05h30	21,9 21,6 21,3 21,2 21,2 21,5	15,9 15,7 15,5 15,3 15,2 15,1	2,57 2,57 2,57 2,58 2,58 2,58	17,5 17,2 16,9 16,6 16,4 16,2	2,89 2,90 2,90 2,91 2,91 2,91	15,8 15,6 15,4 15,2 15,1 15,0	2,92 2,92 2,92 2,93 2,93 2,93	17,3 17,0 16,8 16,5 16,4	1,23 1,23 1,23 1,23 1,23 1,23	13,9 13,7 13,4 13,1 13,0 13,0	2,59 2,59 2,60 2,60 2,60 2,60	13,8 13,7 13,5 13,3 13,1 13,0	2,59 2,59 2,60 2,60 2,60 2,60 2,60	13,8 13,6 13,3 13,0 12,9 12,9	2,95 2,95 2,95 2,96 2,96 2,96	13,8 13,6 13,4 13,2 13,0 13,0	2,95 2,95 2,95 2,96 2,96 2,96	15,6 15,4 15,3 15,1 15,0 14,9	4,94 4,94 4,95 4,96 4,96 4,96	21,0 20,7 20,3 20,0 19,7 19,5	4,75 4,76 4,77 4,78 4,79 4,79
01h30 02h30 03h30 04h30	21,9 21,6 21,3 21,2 21,2	15,9 15,7 15,5 15,3 15,2	2,57 2,57 2,57 2,58 2,58	17,5 17,2 16,9 16,6 16,4	2,89 2,90 2,90 2,91 2,91	15,8 15,6 15,4 15,2 15,1	2,92 2,92 2,92 2,93 2,93	17,3 17,0 16,8 16,5	1,23 1,23 1,23 1,23 1,23	13,9 13,7 13,4 13,1 13,0	2,59 2,59 2,60 2,60 2,60	13,8 13,7 13,5 13,3 13,1	2,59 2,59 2,60 2,60 2,60	13,8 13,6 13,3 13,0 12,9	2,95 2,95 2,95 2,96 2,96	13,8 13,6 13,4 13,2 13,0	2,95 2,95 2,95 2,95 2,96 2,96	15,6 15,4 15,3 15,1 15,0	4,94 4,94 4,95 4,96 4,96	21,0 20,7 20,3 20,0 19,7	4,75 4,76 4,77 4,78 4,79
01h30 02h30 03h30 04h30 05h30 06h30 07h30 08h30	21,9 21,6 21,3 21,2 21,2 21,5 22,3 23,5 24,6	15,9 15,7 15,5 15,3 15,2 15,1 15,0 15,1 15,2	2,57 2,57 2,57 2,58 2,58 2,58 2,58 2,58 2,58 2,58	17,5 17,2 16,9 16,6 16,4 16,2 16,2 16,2 16,4	2,89 2,90 2,90 2,91 2,91 2,91 2,91 2,91 2,91	15,8 15,6 15,4 15,2 15,1 15,0 15,0 15,0 15,0	2,92 2,92 2,92 2,93 2,93 2,93 2,93 2,93	17,3 17,0 16,8 16,5 16,4 16,3 16,4 16,6	1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23	13,9 13,7 13,4 13,1 13,0 13,0 13,1 13,4 13,7	2,59 2,59 2,60 2,60 2,60 2,60 2,60 2,60 2,60 2,59	13,8 13,7 13,5 13,3 13,1 13,0 13,1 13,3 13,6	2,59 2,59 2,60 2,60 2,60 2,60 2,60 2,60 2,60 2,60	13,8 13,6 13,3 13,0 12,9 12,9 13,1 13,4 13,7	2,95 2,95 2,95 2,96 2,96 2,96 2,96 2,95 2,95	13,8 13,6 13,4 13,2 13,0 13,0 13,1 13,3 13,6	2,95 2,95 2,95 2,96 2,96 2,96 2,96 2,96 2,96 2,95	15,6 15,4 15,3 15,1 15,0 14,9 14,9 15,0	4,94 4,94 4,95 4,96 4,96 4,96 4,96 4,96	21,0 20,7 20,3 20,0 19,7 19,5 19,4 19,4	4,75 4,76 4,77 4,78 4,79 4,79 4,80 4,80 4,80
01h30 02h30 03h30 04h30 05h30 06h30 07h30	21,9 21,6 21,3 21,2 21,2 21,5 22,3 23,5	15,9 15,7 15,5 15,3 15,2 15,1 15,0 15,1	2,57 2,57 2,57 2,57 2,58 2,58 2,58 2,58 2,58	17,5 17,2 16,9 16,6 16,4 16,2 16,2 16,2	2,89 2,90 2,90 2,91 2,91 2,91 2,91 2,91	15,8 15,6 15,4 15,2 15,1 15,0 15,0 15,0	2,92 2,92 2,92 2,93 2,93 2,93 2,93 2,93	17,3 17,0 16,8 16,5 16,4 16,3 16,4	1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23	13,9 13,7 13,4 13,1 13,0 13,0 13,1 13,4	2,59 2,59 2,60 2,60 2,60 2,60 2,60 2,60	13,8 13,7 13,5 13,3 13,1 13,0 13,1 13,3	2,59 2,59 2,60 2,60 2,60 2,60 2,60 2,60 2,60	13,8 13,6 13,3 13,0 12,9 12,9 13,1 13,4	2,95 2,95 2,95 2,96 2,96 2,96 2,96 2,95	13,8 13,6 13,4 13,2 13,0 13,0 13,1 13,3	2,95 2,95 2,95 2,96 2,96 2,96 2,96 2,96 2,96	15,6 15,4 15,3 15,1 15,0 14,9 14,9	4,94 4,94 4,95 4,96 4,96 4,96 4,96	21,0 20,7 20,3 20,0 19,7 19,5 19,4 19,4	4,75 4,76 4,77 4,78 4,79 4,79 4,80 4,80
01h30 02h30 03h30 04h30 05h30 06h30 07h30 08h30 09h30 10h30 11h30	21,9 21,6 21,3 21,2 21,2 21,5 22,3 23,5 24,6 25,5 26,2 26,9	15,9 15,7 15,5 15,3 15,2 15,1 15,0 15,1 15,2 15,5 15,9 16,3	2,57 2,57 2,57 2,58 2,58 2,58 2,58 2,58 2,58 2,58 2,57 2,57 2,57	17,5 17,2 16,9 16,6 16,4 16,2 16,2 16,2 16,4 16,9 17,9	2,89 2,90 2,90 2,91 2,91 2,91 2,91 2,91 2,91 2,90 2,89 2,87	15,8 15,6 15,4 15,2 15,1 15,0 15,0 15,0 15,0 15,2 15,4 15,9 16,4	2,92 2,92 2,92 2,93 2,93 2,93 2,93 2,93	17,3 17,0 16,8 16,5 16,4 16,3 16,4 16,6 17,4 18,8 19,9	1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23	13,9 13,7 13,4 13,1 13,0 13,0 13,1 13,4 13,7 14,1 14,6 14,9	2,59 2,59 2,60 2,60 2,60 2,60 2,60 2,59 2,59 2,59 2,58 2,58	13,8 13,7 13,5 13,3 13,1 13,0 13,1 13,3 13,6 13,9 14,3	2,59 2,59 2,60 2,60 2,60 2,60 2,60 2,60 2,59 2,59 2,59 2,58	13,8 13,6 13,3 13,0 12,9 12,9 13,1 13,4 13,7 14,2 14,7 15,0	2,95 2,95 2,95 2,96 2,96 2,96 2,96 2,95 2,95 2,95 2,94 2,94 2,93	13,8 13,6 13,4 13,2 13,0 13,0 13,1 13,3 13,6 14,0 14,4 14,7	2,95 2,95 2,95 2,96 2,96 2,96 2,96 2,96 2,95 2,95 2,95 2,94 2,93	15,6 15,4 15,3 15,1 15,0 14,9 15,0 15,1 15,1 15,1 15,3 15,7 16,0	4,94 4,94 4,95 4,96 4,96 4,96 4,96 4,96 4,96 4,95 4,93 4,93	21,0 20,7 20,3 20,0 19,7 19,5 19,4 19,4 19,4 19,5 20,0 20,6	4,75 4,76 4,77 4,78 4,79 4,79 4,80 4,80 4,80 4,80 4,78 4,77
01h30 02h30 03h30 04h30 05h30 06h30 07h30 08h30 09h30 10h30 11h30 12h30	21,9 21,6 21,3 21,2 21,2 21,5 22,3 23,5 24,6 25,5 26,2	15,9 15,7 15,5 15,3 15,2 15,1 15,0 15,1 15,2 15,5 15,9 16,3	2,57 2,57 2,57 2,58 2,58 2,58 2,58 2,58 2,58 2,58 2,57 2,57 2,57 2,56 2,56	17,5 17,2 16,9 16,6 16,4 16,2 16,2 16,2 16,4 16,9 17,9 18,9	2,89 2,90 2,90 2,91 2,91 2,91 2,91 2,91 2,91 2,90 2,89 2,87 2,87	15,8 15,6 15,4 15,2 15,1 15,0 15,0 15,0 15,0 15,2 15,4 15,9 16,4 16,7	2,92 2,92 2,93 2,93 2,93 2,93 2,93 2,93	17,3 17,0 16,8 16,5 16,4 16,3 16,4 16,6 17,4 18,8 19,9 20,3	1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23	13,9 13,7 13,4 13,1 13,0 13,0 13,1 13,4 13,7 14,1 14,6 14,9 15,3	2,59 2,59 2,60 2,60 2,60 2,60 2,60 2,59 2,59 2,58 2,58 2,57	13,8 13,7 13,5 13,3 13,1 13,0 13,1 13,3 13,6 13,9 14,3 14,6 15,0	2,59 2,59 2,60 2,60 2,60 2,60 2,60 2,60 2,60 2,59 2,59 2,59 2,58 2,58	13,8 13,6 13,3 13,0 12,9 12,9 13,1 13,4 13,7 14,2 14,7 15,0 15,4	2,95 2,95 2,95 2,96 2,96 2,96 2,96 2,95 2,95 2,95 2,94 2,94 2,93 2,92	13,8 13,6 13,4 13,2 13,0 13,0 13,1 13,3 13,6 14,0 14,4 14,7 15,1	2,95 2,95 2,95 2,96 2,96 2,96 2,96 2,96 2,95 2,95 2,95 2,94 2,93 2,93	15,6 15,4 15,3 15,1 15,0 14,9 15,0 15,1 15,1 15,3 15,7 16,0 16,3	4,94 4,94 4,95 4,96 4,96 4,96 4,96 4,96 4,95 4,93 4,93 4,93 4,91	21,0 20,7 20,3 20,0 19,7 19,5 19,4 19,4 19,5 20,0 20,6 21,2	4,75 4,76 4,77 4,78 4,79 4,79 4,80 4,80 4,80 4,80 4,77 4,75
01h30 02h30 03h30 04h30 05h30 06h30 07h30 08h30 09h30 11h30 12h30 13h30	21,9 21,6 21,3 21,2 21,2 21,5 22,3 23,5 24,6 25,5 26,9 27,3 27,5	15,9 15,7 15,5 15,3 15,2 15,1 15,0 15,1 15,2 15,5 16,3 16,6 17,0 17,2	2,57 2,57 2,57 2,58 2,58 2,58 2,58 2,58 2,58 2,58 2,58	17,5 17,2 16,9 16,6 16,4 16,2 16,2 16,2 16,9 17,9 18,9 19,4 19,8 20,1	2,89 2,90 2,91 2,91 2,91 2,91 2,91 2,91 2,91 2,90 2,89 2,87 2,87 2,86 2,86	15,8 15,6 15,4 15,2 15,1 15,0 15,0 15,0 15,0 15,2 15,4 15,9 16,4 16,7 17,1	2,92 2,92 2,92 2,93 2,93 2,93 2,93 2,93	17,3 17,0 16,8 16,5 16,4 16,3 16,4 16,6 17,4 18,8 19,9 20,3 20,7 20,9	1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23	13,9 13,7 13,4 13,1 13,0 13,0 13,1 13,4 13,7 14,1 14,6 14,9 15,3 15,6	2,59 2,59 2,60 2,60 2,60 2,60 2,60 2,59 2,59 2,58 2,58 2,57 2,57 2,57	13,8 13,7 13,5 13,3 13,1 13,0 13,1 13,3 13,6 13,9 14,3 14,6 15,0 15,2 15,3	2,59 2,59 2,60 2,60 2,60 2,60 2,60 2,60 2,59 2,59 2,58 2,58 2,58 2,57	13,8 13,6 13,3 13,0 12,9 12,9 13,1 13,4 13,7 14,2 14,7 15,0 15,4 15,6	2,95 2,95 2,96 2,96 2,96 2,96 2,96 2,95 2,95 2,94 2,94 2,94 2,93 2,92 2,92 2,92	13,8 13,6 13,4 13,2 13,0 13,0 13,1 13,3 13,6 14,0 14,4 14,7 15,1 15,3 15,4	2,95 2,95 2,95 2,96 2,96 2,96 2,96 2,96 2,95 2,95 2,95 2,94 2,93 2,93 2,93 2,93	15,6 15,4 15,3 15,1 15,0 14,9 14,9 15,0 15,1 15,3 15,7 16,0 16,3 16,5 16,7	4,94 4,95 4,96 4,96 4,96 4,96 4,96 4,95 4,93 4,93 4,91 4,90 4,90	21,0 20,7 20,3 20,0 19,7 19,5 19,4 19,4 19,5 20,0 20,6 21,2 21,6 22,0	4,75 4,76 4,77 4,79 4,79 4,80 4,80 4,80 4,80 4,77 4,77 4,77 4,77 4,77
01h30 02h30 03h30 04h30 05h30 06h30 07h30 09h30 10h30 11h30 12h30 13h30 14h30	21,9 21,6 21,3 21,2 21,5 22,3 23,5 24,6 25,5 26,2 26,9 27,3 27,5 26,9	15,9 15,7 15,5 15,3 15,2 15,1 15,0 15,1 15,2 15,5 15,9 16,3 16,6 17,0 17,2 17,3	2,57 2,57 2,57 2,58 2,58 2,58 2,58 2,58 2,58 2,57 2,57 2,57 2,56 2,56 2,55 2,55 2,55	17,5 17,2 16,9 16,6 16,4 16,2 16,2 16,2 16,4 16,9 17,9 18,9 19,4 19,8 20,1 20,1	2,89 2,90 2,90 2,91 2,91 2,91 2,91 2,91 2,90 2,89 2,87 2,86 2,86	15,8 15,6 15,4 15,2 15,1 15,0 15,0 15,0 15,0 15,0 15,4 15,9 16,4 16,7 17,1 17,3 17,3	2,92 2,92 2,93 2,93 2,93 2,93 2,93 2,93	17,3 17,0 16,8 16,5 16,4 16,3 16,4 16,6 17,4 18,8 19,9 20,3 20,7 20,9 20,8	1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23	13,9 13,7 13,4 13,1 13,0 13,0 13,1 13,4 13,7 14,1 14,6 14,9 15,3 15,6 15,6	2,59 2,59 2,60 2,60 2,60 2,60 2,60 2,59 2,59 2,58 2,58 2,57 2,57 2,57	13,8 13,7 13,5 13,3 13,1 13,0 13,1 13,3 13,6 13,9 14,3 14,6 15,0 15,2 15,3 15,4	2,59 2,59 2,60 2,60 2,60 2,60 2,60 2,60 2,59 2,59 2,59 2,58 2,58 2,58 2,57 2,57	13,8 13,6 13,3 13,0 12,9 12,9 13,1 13,4 13,7 14,2 14,7 15,0 15,4 15,6 15,6	2,95 2,95 2,95 2,96 2,96 2,96 2,95 2,95 2,95 2,94 2,94 2,93 2,92 2,92 2,92 2,92	13,8 13,6 13,4 13,2 13,0 13,0 13,1 13,3 13,6 14,0 14,4 14,7 15,1 15,3 15,4	2,95 2,95 2,95 2,96 2,96 2,96 2,96 2,96 2,95 2,95 2,95 2,94 2,93 2,93 2,93 2,93 2,92 2,92	15,6 15,4 15,3 15,1 15,0 14,9 15,0 15,1 15,3 15,7 16,0 16,3 16,5 16,7	4,94 4,94 4,95 4,96 4,96 4,96 4,96 4,95 4,93 4,92 4,91 4,90 4,90 4,89	21,0 20,7 20,3 20,0 19,7 19,5 19,4 19,4 19,4 19,5 20,0 20,6 21,2 21,6 22,0 22,2	4,75 4,76 4,77 4,78 4,79 4,80 4,80 4,80 4,80 4,77 4,75 4,77 4,75 4,77 4,73 4,73 4,73
01h30 02h30 03h30 04h30 05h30 06h30 07h30 08h30 09h30 11h30 12h30 13h30 14h30 15h30 16h30 17h30	21,9 21,6 21,3 21,2 21,5 22,3 23,5 24,6 25,5 26,2 26,9 27,3 27,5 26,9 26,1 25,5	15,9 15,7 15,3 15,2 15,1 15,0 15,1 15,0 15,1 15,5 15,5 17,0 17,0 17,2 17,3 17,3	2,57 2,57 2,57 2,58 2,58 2,58 2,58 2,58 2,57 2,57 2,57 2,56 2,56 2,55 2,55 2,55 2,55 2,55	17,5 17,2 16,9 16,6 16,4 16,2 16,2 16,2 16,9 17,9 18,9 19,4 19,8 20,1 20,0 19,9	2,89 2,90 2,91 2,91 2,91 2,91 2,91 2,91 2,90 2,89 2,87 2,86 2,86 2,86 2,86	15,8 15,6 15,4 15,2 15,1 15,0 15,0 15,0 15,0 15,2 15,4 16,4 16,7 17,1 17,3 17,4 17,4	2,92 2,92 2,93 2,93 2,93 2,93 2,93 2,93	17,3 17,0 16,8 16,5 16,4 16,3 16,4 16,6 17,4 18,8 19,9 20,3 20,7 20,9 20,8 20,6	1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23	13,9 13,7 13,4 13,1 13,0 13,0 13,1 13,4 13,7 14,6 14,9 15,3 15,6 15,6 15,6	2,59 2,59 2,60 2,60 2,60 2,60 2,59 2,59 2,58 2,58 2,57 2,57 2,57 2,57 2,57	13,8 13,7 13,5 13,3 13,1 13,0 13,1 13,6 13,9 14,3 14,6 15,0 15,2 15,3 15,3 15,3	2,59 2,59 2,60 2,60 2,60 2,60 2,60 2,50 2,59 2,59 2,58 2,58 2,57 2,57 2,57 2,57	13,8 13,6 13,3 13,0 12,9 12,9 13,1 13,4 13,7 14,2 14,7 15,6 15,6 15,6 15,6	2,95 2,95 2,96 2,96 2,96 2,96 2,95 2,95 2,95 2,94 2,94 2,94 2,93 2,92 2,92 2,92 2,92 2,92 2,92	13,8 13,6 13,4 13,2 13,0 13,0 13,1 13,3 13,6 14,0 14,4 14,7 15,1 15,3 15,4 15,4 15,4	2,95 2,95 2,95 2,96 2,96 2,96 2,96 2,96 2,95 2,95 2,93 2,93 2,93 2,93 2,92 2,92 2,93	15,6 15,4 15,3 15,1 15,0 14,9 15,0 15,1 15,3 15,7 16,0 16,3 16,5 16,7 16,8 16,8	4,94 4,94 4,95 4,96 4,96 4,96 4,96 4,95 4,93 4,92 4,91 4,90 4,90 4,89 4,89 4,89	21,0 20,7 20,3 20,0 19,7 19,5 19,4 19,4 19,5 20,0 20,6 21,2 21,6 22,0 22,2 22,3	4,75 4,76 4,77 4,78 4,79 4,80 4,80 4,80 4,80 4,78 4,75 4,75 4,74 4,73 4,71
01h30 02h30 03h30 04h30 05h30 06h30 07h30 08h30 09h30 10h30 11h30 12h30 13h30 14h30 15h30 16h30 17h30	21,9 21,6 21,3 21,2 21,2 21,5 22,3 23,5 24,6 25,5 26,9 27,3 27,5 26,9 26,9 26,9 26,9 26,9 27,5 26,9 26,9 26,9 26,9	15,9 15,7 15,5 15,3 15,2 15,1 15,0 15,1 15,0 15,1 15,5 15,9 16,6 17,0 17,2 17,3 17,3 17,3	2,57 2,57 2,57 2,58 2,58 2,58 2,58 2,58 2,58 2,58 2,57 2,57 2,57 2,56 2,55 2,55 2,55 2,55 2,55 2,55	17,5 17,2 16,9 16,6 16,4 16,2 16,2 16,4 16,9 17,9 18,9 19,4 19,8 20,1 20,1 20,0 19,9 19,6	2,89 2,90 2,91 2,91 2,91 2,91 2,91 2,91 2,90 2,87 2,87 2,86 2,86 2,86 2,86 2,86 2,86	15,8 15,6 15,4 15,2 15,1 15,0 15,0 15,0 15,0 15,2 15,4 15,9 16,4 16,7 17,1 17,3 17,3 17,4 17,4	2,92 2,92 2,93 2,93 2,93 2,93 2,93 2,93	17,3 17,0 16,8 16,5 16,4 16,3 16,4 16,6 17,4 18,8 19,9 20,3 20,7 20,9 20,8 20,6 20,4 20,1	1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23	13,9 13,7 13,4 13,0 13,0 13,0 13,1 13,4 13,7 14,1 14,6 14,9 15,6 15,6 15,6 15,6 15,5 15,5	2,59 2,59 2,60 2,60 2,60 2,60 2,59 2,59 2,58 2,57 2,57 2,57 2,57 2,57 2,57 2,57 2,57	13,8 13,7 13,5 13,3 13,1 13,0 13,1 13,3 13,6 13,9 14,6 15,0 15,2 15,3 15,4 15,3 15,3	2,59 2,59 2,60 2,60 2,60 2,60 2,60 2,60 2,59 2,59 2,58 2,58 2,58 2,57 2,57 2,57 2,57 2,58 2,58 2,58	13,8 13,6 13,3 13,0 12,9 12,9 13,1 13,4 13,7 14,2 14,7 15,0 15,6 15,6 15,6 15,5 15,5	2,95 2,95 2,96 2,96 2,96 2,96 2,96 2,95 2,95 2,94 2,94 2,94 2,93 2,92 2,92 2,92 2,92 2,92 2,92 2,92	13,8 13,6 13,4 13,2 13,0 13,0 13,1 13,3 13,6 14,0 14,4 14,7 15,1 15,4 15,4 15,4 15,4 15,3 15,1	2,95 2,95 2,96 2,96 2,96 2,96 2,96 2,96 2,95 2,95 2,95 2,93 2,93 2,93 2,92 2,92 2,92 2,93 2,93	15,6 15,4 15,3 15,1 15,0 14,9 15,0 15,1 15,3 15,7 16,0 16,3 16,5 16,7 16,8 16,8 16,8	4,94 4,95 4,96 4,96 4,96 4,96 4,96 4,96 4,96 4,95 4,93 4,93 4,91 4,90 4,89 4,89 4,89 4,89 4,89	21,0 20,7 20,3 20,0 19,7 19,5 19,4 19,4 19,5 20,0 20,6 21,6 21,6 22,0 22,2 22,3 22,3 22,2	4,75 4,76 4,77 4,78 4,79 4,80 4,80 4,80 4,77 4,75 4,77 4,77 4,75 4,77 4,71 4,71
01h30 02h30 03h30 04h30 05h30 06h30 07h30 08h30 09h30 11h30 12h30 13h30 14h30 16h30 17h30 18h30 19h30	21,9 21,6 21,3 21,2 21,2 21,5 22,3 23,5 24,6 25,5 26,2 26,9 27,3 27,5 26,9 26,1 25,5 26,2 27,5 26,9 27,3 27,5 27,5 26,9 27,3 27,5 27,5 27,5 27,5 27,5 27,5 27,5 27,5	15,9 15,7 15,5 15,3 15,2 15,1 15,0 15,1 15,2 15,1 15,9 16,3 16,6 17,0 17,2 17,3 17,3 17,3 17,3 17,3	2,57 2,57 2,57 2,58 2,58 2,58 2,58 2,58 2,58 2,58 2,58	17,5 17,2 16,9 16,6 16,4 16,2 16,2 16,2 16,4 16,9 17,9 18,9 19,4 19,8 20,1 20,0 19,9 19,6 19,2 18,7	2,89 2,90 2,91 2,91 2,91 2,91 2,91 2,91 2,91 2,90 2,89 2,87 2,86 2,86 2,86 2,86 2,86 2,87 2,87	15,8 15,6 15,4 15,2 15,1 15,0 15,0 15,0 15,0 15,2 15,4 16,4 16,7 17,1 17,3 17,3 17,4 17,4 17,4 17,9 16,6	2,92 2,92 2,93 2,93 2,93 2,93 2,93 2,93	17,3 17,0 16,8 16,5 16,4 16,6 17,4 18,8 19,9 20,3 20,7 20,9 20,8 20,6 20,1 19,6 19,0	1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23	13,9 13,7 13,4 13,1 13,0 13,0 13,1 13,4 13,7 14,1 14,6 15,6 15,6 15,6 15,5 15,5 15,5 14,9 14,9	2,59 2,60 2,60 2,60 2,60 2,60 2,59 2,59 2,59 2,58 2,57 2,57 2,57 2,57 2,57 2,57 2,57 2,57	13,8 13,7 13,5 13,3 13,1 13,0 13,1 13,6 13,9 14,3 14,6 15,0 15,2 15,3 15,4 15,3 15,4 15,3 15,4 14,8	2,59 2,60 2,60 2,60 2,60 2,60 2,60 2,59 2,59 2,58 2,58 2,57 2,57 2,57 2,57 2,57 2,58 2,58 2,58 2,58 2,58 2,58 2,58 2,58	13,8 13,6 13,3 13,0 12,9 12,9 13,1 13,4 13,7 14,2 14,7 15,6 15,6 15,6 15,6 15,5 15,3 14,9	2,95 2,95 2,95 2,96 2,96 2,96 2,95 2,95 2,95 2,94 2,93 2,92 2,92 2,92 2,92 2,92 2,92 2,93 2,93	13,8 13,6 13,4 13,2 13,0 13,0 13,1 13,3 13,6 14,0 14,4 14,7 15,1 15,3 15,4 15,4 15,4 15,4 15,3 15,4 14,8 14,8	2,95 2,95 2,95 2,96 2,96 2,96 2,96 2,96 2,96 2,95 2,95 2,93 2,93 2,93 2,93 2,92 2,92 2,93 2,93	15,6 15,4 15,3 15,1 15,0 14,9 15,0 15,1 15,3 16,5 16,3 16,5 16,8 16,8 16,8 16,6 16,4 16,4	4,94 4,95 4,96 4,96 4,96 4,96 4,96 4,96 4,95 4,93 4,93 4,93 4,91 4,90 4,89 4,89 4,89 4,89 4,89 4,89 4,89 4,89	21,0 20,7 20,3 20,0 19,7 19,5 19,4 19,4 19,5 20,0 21,2 21,6 22,0 22,2 22,3 22,3 22,3 22,0 21,8	4,75 4,76 4,77 4,79 4,79 4,80 4,80 4,80 4,80 4,78 4,77 4,75 4,74 4,73 4,74 4,71 4,71 4,71 4,71 4,72 4,72 4,72
01h30 02h30 03h30 04h30 05h30 06h30 07h30 08h30 09h30 10h30 11h30 12h30 13h30 17h30 17h30 18h30 17h30 17h30 17h30 17h30 17h30	21,9 21,6 21,3 21,2 21,2 21,5 22,3 23,5 26,2 26,9 27,3 27,5 26,1 25,5 26,1 26,1 25,5 26,2 26,9 26,1 26,1 27,2 27,5 27,5 26,2 26,2 26,2 27,2 27,5 27,5 27,5 27,5 27,5 27,5 27	15,9 15,7 15,5 15,3 15,2 15,1 15,0 15,1 15,0 15,1 15,2 15,5 15,9 16,3 16,6 17,0 17,2 17,3 17,3 17,3 17,3 17,3 16,7	2,57 2,57 2,57 2,58 2,58 2,58 2,58 2,58 2,58 2,58 2,57 2,57 2,57 2,55 2,55 2,55 2,55 2,55	17,5 17,2 16,9 16,6 16,4 16,2 16,2 16,2 16,9 17,9 18,9 19,8 20,1 20,0 19,9 19,6 19,2 18,7 18,3	2,89 2,90 2,91 2,91 2,91 2,91 2,91 2,91 2,91 2,90 2,87 2,86 2,86 2,86 2,86 2,86 2,86 2,86 2,87 2,87 2,88	15.8 15.6 15.4 15.2 15.1 15.0 15.0 15.0 15.0 15.2 15.4 16.4 16.7 17.1 17.3 17.4 17.4 17.2 16.9 16.6 16.6	2,92 2,92 2,93 2,93 2,93 2,93 2,93 2,93	17,3 17,0 16,8 16,4 16,3 16,4 16,6 17,4 18,8 19,9 20,3 20,7 20,9 20,8 20,4 20,1 19,6 19,0 18,5	1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23	13,9 13,7 13,4 13,0 13,0 13,1 13,0 13,1 14,1 14,5 15,6 15,6 15,6 15,5 15,5 15,3 14,9 14,7 14,7	2,59 2,60 2,60 2,60 2,60 2,60 2,60 2,59 2,59 2,58 2,57 2,57 2,57 2,57 2,57 2,57 2,57 2,57	13,8 13,7 13,5 13,3 13,1 13,0 13,1 13,3 13,6 13,9 14,6 15,0 15,2 15,3 15,3 15,1 14,6 14,4	2,59 2,60 2,60 2,60 2,60 2,60 2,60 2,60 2,50 2,59 2,59 2,58 2,58 2,57 2,57 2,57 2,57 2,58 2,58 2,58 2,58 2,58 2,58 2,58 2,58	13,8 13,6 13,3 13,0 12,9 13,1 13,4 13,7 14,2 14,7 15,6 15,6 15,6 15,6 15,5 15,3 14,9 14,4	2,95 2,95 2,96 2,96 2,96 2,96 2,95 2,95 2,94 2,94 2,93 2,92 2,92 2,92 2,92 2,92 2,92 2,93 2,93	13,8 13,6 13,4 13,2 13,0 13,0 13,1 13,3 13,6 14,0 14,7 15,1 15,3 15,4 15,4 15,3 15,1 14,8	2,95 2,95 2,96 2,96 2,96 2,96 2,96 2,96 2,95 2,95 2,95 2,93 2,93 2,93 2,93 2,93 2,92 2,92 2,92	15.6 15.4 15.3 15.1 15.0 14.9 15.0 15.1 15.1 15.3 15.7 16.3 16.5 16.7 16.8 16.7 16.6 16.6 16.6 16.6 16.2	4,94 4,95 4,96 4,96 4,96 4,96 4,96 4,96 4,95 4,93 4,91 4,90 4,80 4,80 4,80 4,80 4,80 4,80 4,80 4,8	21,0 20,7 20,3 20,0 19,7 19,5 19,4 19,4 19,5 20,0 20,6 21,2 21,6 22,0 22,3 22,3 22,3 22,3 21,8 21,5	4,75 4,76 4,77 4,79 4,79 4,80 4,80 4,80 4,78 4,75 4,75 4,74 4,73 4,71 4,71 4,71 4,71 4,72 4,72 4,72 4,73
01h30 02h30 03h30 04h30 05h30 06h30 07h30 08h30 09h30 11h30 12h30 13h30 14h30 15h30 16h30 17h30 18h30 19h30	21,9 21,6 21,3 21,2 21,2 21,5 22,3 23,5 24,6 25,5 26,2 26,9 27,3 27,5 26,9 26,1 25,5 26,2 27,5 26,9 27,3 27,5 27,5 26,9 27,3 27,5 27,5 27,5 27,5 27,5 27,5 27,5 27,5	15,9 15,7 15,5 15,3 15,2 15,1 15,0 15,1 15,2 15,1 15,9 16,3 16,6 17,0 17,2 17,3 17,3 17,3 17,3 17,3	2,57 2,57 2,57 2,58 2,58 2,58 2,58 2,58 2,58 2,58 2,58	17,5 17,2 16,9 16,6 16,4 16,2 16,2 16,2 16,4 16,9 17,9 18,9 19,4 19,8 20,1 20,0 19,9 19,6 19,2 18,7	2,89 2,90 2,91 2,91 2,91 2,91 2,91 2,91 2,91 2,90 2,89 2,87 2,86 2,86 2,86 2,86 2,86 2,87 2,87	15,8 15,6 15,4 15,2 15,1 15,0 15,0 15,0 15,0 15,2 15,4 16,4 16,7 17,1 17,3 17,3 17,4 17,4 17,2 16,6	2,92 2,92 2,93 2,93 2,93 2,93 2,93 2,93	17,3 17,0 16,8 16,5 16,4 16,6 17,4 18,8 19,9 20,3 20,7 20,9 20,8 20,6 20,1 19,6 19,0	1,23 1,23 1,23 1,23 1,23 1,23 1,23 1,23	13,9 13,7 13,4 13,1 13,0 13,0 13,1 13,4 13,7 14,1 14,6 15,6 15,6 15,6 15,5 15,5 15,5 14,9 14,9	2,59 2,60 2,60 2,60 2,60 2,60 2,59 2,59 2,59 2,58 2,57 2,57 2,57 2,57 2,57 2,57 2,57 2,57	13,8 13,7 13,5 13,3 13,1 13,0 13,1 13,6 13,9 14,3 14,6 15,0 15,2 15,3 15,4 15,3 15,4 15,3 15,4 14,8	2,59 2,60 2,60 2,60 2,60 2,60 2,60 2,59 2,59 2,58 2,58 2,57 2,57 2,57 2,57 2,57 2,58 2,58 2,58 2,58 2,58 2,58 2,58 2,58	13,8 13,6 13,3 13,0 12,9 12,9 13,1 13,4 13,7 14,2 14,7 15,6 15,6 15,6 15,6 15,5 15,3 14,9	2,95 2,95 2,95 2,96 2,96 2,96 2,95 2,95 2,95 2,94 2,93 2,92 2,92 2,92 2,92 2,92 2,92 2,93 2,93	13,8 13,6 13,4 13,2 13,0 13,0 13,1 13,3 13,6 14,0 14,4 14,7 15,1 15,3 15,4 15,4 15,4 15,4 15,3 15,4 14,8 14,8	2,95 2,95 2,95 2,96 2,96 2,96 2,96 2,96 2,96 2,95 2,95 2,93 2,93 2,93 2,93 2,92 2,92 2,93 2,93	15,6 15,4 15,3 15,1 15,0 14,9 15,0 15,1 15,3 16,5 16,3 16,5 16,8 16,8 16,8 16,6 16,4 16,4	4,94 4,95 4,96 4,96 4,96 4,96 4,96 4,96 4,95 4,93 4,93 4,93 4,91 4,90 4,89 4,89 4,89 4,89 4,89 4,89 4,89 4,89	21,0 20,7 20,3 20,0 19,7 19,5 19,4 19,4 19,5 20,0 21,2 21,6 22,0 22,2 22,3 22,3 22,3 22,0 21,8	4,75 4,76 4,77 4,79 4,79 4,80 4,80 4,80 4,80 4,78 4,77 4,75 4,74 4,73 4,74 4,71 4,71 4,71 4,71 4,72 4,72 4,72

Tabela B.2. T_i (°C) e TR (s) - Edifício II - sse4 - 5 ren/h; Sabine (1000 Hz)

(continua)

			C) e										00 H								iua)
Tempo (h)	Temperatura externa (°C)	T _i - PLC(10)-ar(75)-PLC(10)	TR - PLC(10)-ar(75)-PLC(10)	7;- PLC(10)-LVI(50)-ar(25)-PLC(10)	TR - PLC(10)-LVI(50)-ar(25)-PLC(10)	7,- PLC(12)-ar(90)-PLC(12)	<i>TR</i> - PLC(12)-ar(90)-PLC(12)	T _i - PLC(12)-LVI(50)-ar(40)-PLC(12)	TR - PLC(12)-LVI(50)-ar(40)-PLC(12)	7, - PLC(100)	TR - PLC(100)	T ₁ - GEA(12,5)-ar(75)-GEA(12,5)	TR - GEA(12,5)-ar(75)-GEA(12,5)	T _i - GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	TR - GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	T _i - GEA(15)-ar(90)-GEA(15)	TR - GEA(15)-ar(90)-GEA(15)	7;- GEA(15)-LVI(50)-ar(40)-GEA(15)	TR - GEA(15)-LVI(50)-ar(40)-GEA(15)	T _i - GEA(100)	<i>T</i> R- GEA(100)
00h30 01h30	21,9 21,6	24,7 24,3	3,47 3,48	24,4 24,0	3,48 3,49	23,9 23,6	3,49 3,49	24,4 24,1	3,48 3,49	24,8 24,4	3,47 3,48	23,7 23,3	3,84 3,85	24,2 23,9	3,83 3,84	23,7 23,4	3,84 3,85	24,2 23,9	3,83 3,84	24,2 23,8	3,83 3,84
02h30	21,3	23,9	3,49	23,7	3,49	23,2	3,50	23,7	3,49	24,0	3,48	22,9	3,86	23,5	3,84	23,0	3,85	23,6	3,84	23,5	3,84
03h30 04h30	21,2 21,2	23,6 23,4	3,49 3,50	23,4 23,2	3,50 3,50	22,9 22,7	3,51 3,51	23,5 23,3	3,50 3,50	23,8 23,6	3,49 3,49	22,7 22,5	3,86 3,87	23,3 23,1	3,85 3,85	22,7 22,6	3,86 3,86	23,3	3,85 3,85	23,2 23,0	3,85 3,86
05h30 06h30	21,5 22,3	23,4	3,50 3,49	23,2	3,50 3,50	22,7 23,0	3,51 3,50	23,3	3,50 3,49	23,5 23,8	3,50 3,49	22,5 22,9	3,87 3,86	23,1 23,4	3,85 3,85	22,6 22,9	3,87 3,86	23,1 23,5	3,85 3,85	23,0	3,86
07h30	23,5	24,2	3,48	24,1	3,49	23,7	3,49	24,2	3,48	24,3	3,48	23,5	3,85	24,0	3,84	23,6	3,84	24,1	3,84	23,9	3,85 3,84
08h30 09h30	24,6 25,5	25,2 26,6	3,47 3,44	25,3 27,4	3,47 3,43	25,1 28,2	3,47 3,41	25,3 27,3	3,47 3,43	25,2 26,6	3,47 3,44	25,4 29,1	3,81	25,3 27,7	3,81 3,76	25,3 28,7	3,81 3,74	25,3 27,5	3,81 3,76	25,0 26,8	3,82 3,78
10h30	26,2	27,8	3,42	29,2	3,39	30,5	3,37	29,0	3,40	27,7	3,42	30,5	3,70	29,4	3,72	30,4	3,70	29,3	3,72	28,4	3,74
11h30 12h30	26,9 27,3	28,7 29,4	3,40 3,39	29,8 30,1	3,38 3,38	30,4 30,5	3,37	29,6 30,0	3,39	28,6 29,3	3,41 3,39	29,6 30,5	3,72 3,70	29,6 29,9	3,72 3,71	29,7 30,4	3,72 3,70	29,6 29,9	3,72 3,71	29,3 29,8	3,73 3,71
13h30	27,5	29,7	3,38	30,1	3,38	31,0	3,36	30,1	3,38	29,5	3,39	30,7	3,69	30,1	3,71	30,7	3,69	30,1	3,71	30,0	3,71
14h30 15h30	27,5 26,9	29,8 29,4	3,38	30,0 29,4	3,38	30,6 29,9	3,37	29,9 29,4	3,38	29,6 29,2	3,39	29,9 29,6	3,71 3,72	29,8 29,2	3,71 3,72	30,0 29,6	3,71 3,72	29,8 29,3	3,71 3,72	29,9 29,4	3,71 3,72
16h30	26,1	28,9	3,40	28,7	3,40	29,1	3,39	28,7	3,40	28,7	3,40	28,8	3,73	28,6	3,74	28,8	3,73	28,6	3,74	28,8	3,73
17h30 18h30	25,5 24,7	28,4	3,40 3,42	28,1 27,3	3,41 3,42	28,3 27,4	3,41 3,42	28,1 27,3	3,41 3,42	28,2 27,6	3,41 3,42	27,8 27,0	3,75	27,9 27,1	3,75 3,77	27,9 27,0	3,75 3,77	27,9 27,2	3,75 3,76	28,2 27,4	3,74 3,76
19h30 20h30	23,9 23,2	27,0 26,3	3,43 3,44	26,6 25,9	3,44 3,45	26,5 25,7	3,44 3,45	26,6 25,9	3,44 3,45	26,9 26,3	3,43 3,44	26,1 25,3	3,79 3,80	26,4 25,7	3,78 3,80	26,2 25,4	3,79 3,80	26,4 25,7	3,78 3,80	26,6 25,9	3,78 3,79
21h30	22,7	25,8	3,45	25,3	3,46	25,0	3,47	25,3	3,46	25,7	3,45	24,7	3,82	25,1	3,81	24,8	3,82	25,1	3,81	25,3	3,81
22h30 23h30	22,4 22,1	25,3 24,9	3,46	24,9	3,47	24,5	3,47	24,9	3,47	25,3	3,46	24,3	3,83	24,7	3,82	24,3	3,83	24,7	3,82	24,8	3,82
	22,1	24,3	3,47	24,5	3,48	24,1	3,48	24,5	3,47	24,9	3,47	23,9	3,84	24,3	3,83	23,9	3,83	24,4	3,82	24,4	3,82
Tempo (h)	Temperatura externa (°C)	<i>T_i</i> - PMC(75)-ar(75)-PMC(75)	<i>TR</i> - PMC(75)-ar(75)-PMC(75)	7, - PMC(75)-LVI(50)-ar(25)-PMC(75)	7R - PMC(75)-LVI(50)-ar(25)-PMC(75)	T, - PMC(225)	<i>TR</i> - PMC(225)	T _i - CCA(100)-ar(75)-CCA(100)	7R - CCA(100)-ar(75)-CCA(100)	7,- CCA(100)-LVI(50)-ar(25)-CCA(100)	TR - CCA(100)-LVI(50)-ar(25)- CCA(100)	7, - CCA(275)	TR - CCA(275)	T _i - EPS(100)-ar(75)-EPS(100)	<i>TR</i> - EPS(100)-ar(75)-EPS(100)	T _i - EPS(100)-LVI(50)-ar(25)-EPS(100)	<i>TR</i> - EPS(100)-LVI(50)-ar(25)- EPS(100)	7, - EPS(275)	<i>TR</i> - EPS(275)	T, - ATC(150)	<i>TR</i> - ATC(150)
	externa (°C)		PMC(75)-ar(75)-PMC(75)	- PMC(75)-LVI(50)-ar(25)-PMC(75)	R - PMC(75)-LVI(50)-ar(25)-PMC(75)		- PMC(225)		- CCA(100)-ar(75)-CCA(100)		16.6. 16.6.		16.1 16.1 16.1	0. EPS(100)-ar(75)-EPS(100)	- EPS(100)-ar(75)-EPS(100)		- EPS(100)-LVI(50)-ar(25)- EPS(100)		- EPS(275)		
(t) 00 E E D 00h30 01h30 02h30	Temperatura externa (°C)	6 5 6 6 6 7 6 9 6 7 6 9 9 9 9 9 9 9 9 9 9 9	25.5 27.5 28.5 29.5 30.5 44.5 44.5 45.5 45.5 45.5 45.5 45.5 4	6 5 6 7 - PMC(75)-LVI(50)-ar(25)-PMC(75)	9.5 5 78 - PMC(75)-LVI(50)-ar(25)-PMC(75)	25,6 25,3 25,0	7R - PMC(225)	7, - CCA(100)-ar(75)-CCA(100)	26.1 16.1 16.1 16.1 16.1 16.1 16.1 16.1	00)-10 (25)-CCA(100)-LVI(50)-ar(25)-CCA(100)	66.1 TR - CCA(100)-LVI(50)-ar(25)- CCA(100)	24,9 24,6 24,3	7R - CCA(275)	2, 5, 5, 6, 6, 7, - EPS(100)-ar(75)-EPS(100)	25 '5' '5' TR - EPS(100)-ar(75)-EPS(100)	(2) (2) (4) (2) (4) (4) (5) (4) (5) (5) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	9.5'5'9'5' 9.5'5'7	25,0 24,7 24,4	7R - EPS(275)	24,9 24,5 24,2	5,44 5,46 5,47
00h30 01h30 02h30 03h30 04h30	Temperatura externa (°C) 21,2 2,12 2,12 2,12	7 - PMC(75)-ar(75)-PMC(75) 25-25 25-27 24-4 24-4 25-27 25-27 24-4 24-4 24-4 24-4 24-4 24-4 24-4 2	78- PMC(75)-ar(75)-PMC(75) 5,44- 5,43- 5,44- 5,44- 5,46- 5,46- 5,46- 6,4	25.4 2.52 2.75 2.4.6 2.75 2.76 2.76	94.5 94.5 94.5 95.5 96.5 97.5	25,6 25,3 25,3 25,0 24,8 24,7	18-5,41 5,43 5,43 5,44 5,44 5,45	7 - CCA(100)-ar(22)-CCA(100) 23,9 23,7	16.1 16.1 16.1 16.1 26.1 26.1 26.1 26.1	8.55 20 20 20 20 20 20 20	7R - CCA(100)-LVI(50)-ar(25)- 16'1 26'1 26'1 26'1 26'1 36'1 36'1 36'1 36'1 36'1 36'1 36'1 3	24,9 24,6 24,3 24,0 23,9	19.1 19.1 19.1 19.2 19.2 19.2 19.2	7, - EPS(100)-ar(75)-EPS(100)	78 - EPS(100)-ar(75)-EPS(100)	8.55 8.67 8.67 8.69 8.69 8.69 8.69 8.69 8.69 8.69 8.69	7R - EPS(100)-LVI(50)-ar(25)- 64-5 64-7 78-6 78-7 78-7 8-7 8-7 8-7 8-7 8-7 8-7 8-7 8	25,0 24,7 24,4 24,1 23,9	78-EPS(275) 178-EPS(275) 178-EPS(275) 178-EPS(275)	24,9 24,5 24,2 23,9 23,7	5,44 5,46 5,47 5,48 5,49
00h30 01h30 02h30 03h30 04h30 05h30	Lemberatria externa (°C) 21,5 21,5 21,5 21,5	25.5 25.5 24.4 24.4 24.4 24.4	78-5,46 5,46 5,46 5,46 5,46	24,6 24,6 24,6 24,6 24,6	94.5 64.5 64.5 64.5 64.5 64.5 64.5 64.5 6	25,6 25,3 25,0 24,7 24,6	74 - PMC(225) 743 - 5,45 745 - 5,45 745 - 5,45	24,8 24,5 24,5 24,1 23,7 23,7	19.1 Le.1 Le.1 Le.1 Le.1 Le.1 Le.1 Le.1 Le	8.52 0.54 0.55 0.55 0.55 0.55 0.55 0.55 0.55	7R - CCA(100)-LVI(50)-ar(25)- 166'1	24,9 24,6 24,3 24,0 23,9 23,9	1,91 1,91 1,91 1,92 1,92 1,92 1,92	24,9 24,6 24,6 24,0 23,8 23,8	78 - EPS(100)-ar(75)-EPS(100) 64,5 64,5 64,5 64,5 64,5 64,5 64,5 64,5	8.52 9.64 7. EPS(100)-LVI(50)-ar(25)-EPS(100)	78 - EPS(100)-LVI(50)-ar(25)- 64-5-64-7-65-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-	25,0 24,7 24,4 24,1 23,9 23,9	5,44 5,45 5,45 5,47 5,47 5,48 5,48	24,9 24,5 24,2 23,7 23,7	5,44 5,46 5,47 5,49 5,49
00h30 01h30 02h30 03h30 04h30 05h30 06h30 07h30	(°C) 21,9 21,2 21,2 21,2 21,5 22,3 23,5	25,5 225,2 24,6 24,4 24,6 25,1	25,42 5,43 5,44 5,45 5,46 5,46 5,46 5,46 5,46	25,4 24,7 24,6 24,7 24,6 24,9 25,4	24.5 24.5 24.5 24.5 24.5 24.5 24.5 24.5	25,6 25,3 25,0 24,8 24,7 24,6 24,9 25,4	18.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19	24,8 24,5 24,5 23,9 23,7 23,7 24,0 24,5	19.1 19.1 19.1 19.2 19.2 19.1 19.1 19.1	CCA(100)-LV((50)-ar(25)-CCA(100)-24,0 24,0 23,8 23,8 24,1 24,1 24,1	7R- CCA(100)-LV((50)-ar(25)- 16.1 16.1 26.1 26.1 26.1 26.1 26.1 26.1	24,9 24,6 24,3 24,0 23,9 23,9 24,1 24,1 24,7	1,91 1,91 1,92 1,92 1,92 1,92 1,92 1,92	24,9 24,6 24,2 23,8 23,8 23,8 24,1 24,1 24,6	78-548 (100)-ar(12)-EPS(100) (100)-548 (100) (10	24,0 23,8 24,0 24,6 24,6 24,6	- EPS(100)-LV(50)-ar(25)- 5,44 5,45 5,47 5,48 5,48 5,49 5,48 5,49 5,48	25,0 25,0 24,7 24,4 23,9 23,9 23,9 24,2 24,2 24,2	5,44 5,45 5,46 5,47 5,48 5,48 5,47 5,48	24,9 24,5 24,2 23,9 23,7 23,7 24,0 24,5	5,44 5,46 5,47 5,48 5,49 5,49 5,49 5,49
00h30 01h30 02h30 03h30 04h30 05h30 06h30 07h30 08h30	21,9 21,2 21,2 21,5 22,3 23,5 24,6	25,5 25,2 24,9 24,4 24,4 24,4 25,1 25,9	1K- PMC(75)-ar(75)-PMC(75) 5.43 5.44 5.46 5.46 5.46 5.44 5.41	25,4 25,4 24,6 24,6 24,6 24,6 24,9 25,4 26,2	5,43 5,45 5,45 5,45 5,45 5,45 5,43 5,43	25,6 25,3 25,3 25,0 24,8 24,7 24,6 24,9 25,4 26,1	LR - PMC(225) 1.541 5.43 5.44 5.45 5.45 5.45 5.43 5.43 5.43	24,8 24,5 23,7 23,7 24,5 25,6	19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1	CCA(100)-LV(50)-ar(25)-CCA(100)-LV(60)-ar(25)-CCA(100)-23.8 24.2 24.0 23.8 24.1 25.7	78- CCA(100)-LVI(50)-ar(25)- 16.1 16.1 16.1 26.1 26.1 26.1 26.1 16.1 1	24,9 24,6 24,6 24,3 23,9 23,9 24,1 24,7 25,6	1,91 1,91 1,92 1,92 1,92 1,92 1,92 1,91 1,91	(00)-ar(12)-EPS(100)-ar(12)-EPS(24,9) 24,9 24,9 24,2 24,0 23,8 24,1 24,6 25,5	(100)-ar(12)-EbS(100) 5,44 5,48 5,48 5,48 5,48 5,48 5,48 5,48	(100)-TAI(20)-EPS(100)-TAI(20)-EPS(100)-TAI(20)-EPS(100)-TAI(20)-EPS(100)-TAI(20)-EPS(100)-TAI(20)-EPS(100)-TAI(20)-EPS(100)-TAI(20)-T	LS - EPS(100)-LV(50)-ar(25)- 5.44 5.45 5.47 5.48 5.49 5.48 5.48 5.49 5.48 5.48 5.48 5.48 5.48 5.48 5.48 5.48	25.0 24.7 24.4 23.9 23.9 24.2 24.7 25.6	5,44 5,45 5,46 5,47 5,48 5,48 5,47 5,48 5,47	24,9 24,5 24,5 24,2 23,7 23,7 24,5 24,5 25,4	5,44 5,46 5,47 5,48 5,49 5,48 5,49 5,48 5,48
00h30 01h30 02h30 03h30 04h30 05h30 06h30 07h30 08h30 09h30 10h30	(°C) 21,9 21,6 21,3 21,5 22,15 22,5 22,5 22,5 22,5 23,5 24,6 25,5 26,2	25,5 25,2 24,4 24,6 25,1 25,9 27,0 27,7	78- DWC(12)-ar(12)-bWC(12) 5,42 5,43 5,44 5,46 5,46 5,46 5,46 5,47 5,47 5,48 5,49 5,49 5,49 5,49 5,49 5,49 5,49 5,49	25,4 24,9 25,4 24,6 24,9 25,4 26,6 27,2 27,9	29. LVI(50)-ar(25)-DMC(25) 5,43 5,45 5,45 5,45 5,43 5,43 5,43 5,43	25,6 25,3 25,0 24,8 24,7 24,6 24,9 25,4 26,1 27,2 27,8	5,41 5,43 5,43 5,45 5,45 5,45 5,45 5,45 5,45	CCA(100)-ar(75)-CCA(100)-ar(75	CCA(100)-a-(72)-CCA(100)-a-(72	CCA(100)-ar(25)-CCA(100)-gr(25)-CCA(100)-gr(25)-CCA(100)-gr(25)-g	78 - CCA(100)-LV((50)-ar(25)- 1.91 1.92 1.92 1.92 1.92 1.92 1.92 1.92	24,9 24,6 24,3 24,0 23,9 24,1 24,7 25,6 27,1 28,2	1,91 1,91 1,92 1,92 1,92 1,92 1,92 1,91 1,91	(00)-ar(12)-EPS(100)-ar(12)-EPS(100)-21(12)-EPS(100)-EPS(100)-	(000)-ar(1/20)-EPS(100) 5,44 5,49 5,49 5,49 5,48 5,49 5,48 5,49 5,48 5,49 5,49 5,48 5,49 5,49 5,49 5,49 5,49 5,49 5,49 5,49	(25)-ELS(100)-at(52)-ELS(100)-	LEPS(100)-ar(25)- 5,44 5,45 5,46 5,48 5,48 5,48 5,48 5,48 5,48 5,49 5,48 5,49 5,48 5,49 5,48 5,49 5,48 5,49	25.0 24.7 24.4 24.1 23.9 24.2 24.7 25.6 26.9 27.9	5,44 5,45 5,46 5,47 5,48 5,48 5,47 5,48 5,47 5,43 5,43 5,43 5,43 5,43	24,9 24,5 24,2 23,9 23,7 24,0 24,5 25,4 26,5 27,4	5,44 5,46 5,47 5,48 5,49 5,48 5,48 5,46 5,43 5,38 5,35
00h30 01h30 02h30 02h30 03h30 04h30 05h30 06h30 07h30 08h30 09h30	(C) 21,9 21,9 21,6 21,2 21,5 22,15 22,5 23,5 24,6 25,5	25.5 25.2 24.9 24.6 24.4 24.6 25.7 27.0	5,42 5,43 5,44 5,46 5,46 5,46 5,46 5,46 5,41 5,37 5,32	25,4 25,2 24,9 24,6 24,6 24,9 25,2 24,9 25,2 24,9 24,6 24,6 24,9 25,2	5,42 5,45 5,45 5,45 5,45 5,45 5,45 5,45	25,6 25,3 25,0 24,8 24,9 25,1 24,6 24,9 25,1 27,2	148 - BMC(525) 148 - BMC(525) 149 - BMC(525) 140 - BMC(525) 140 - BMC(525) 141 - BMC(525)	24,8 24,5 24,1 23,7 24,0 24,0 24,5 25,6 27,3	(100)-ar(32)-CCA(100)-ar(32)-Ar(32)-	CCY(100) -1. CCY(100) -24.9 24.9 24.1 24.7 25.7 27.5	78- CCA(100)-LV((50)-ar(52)- 16.1 16.1 26.1 26.1 26.1 26.1 16.1 16.1	24,9 24,6 24,3 24,0 23,9 24,1 24,7 25,6 27,1	- CCA(275) - CCA(275)	(00)-ar(12)-E b8(10)-ar(12)-E b8(10)-24(10)-24(10)-24(10)-25(10)-	5,44 5,48 5,49 5,49 5,49 5,42 5,42 5,42 5,42 5,42 5,42 5,42 5,42	(001)-a-(52)-e-(LBS(100)-FA((20)-at(52)- 5,45 5,46 5,48 5,48 5,48 5,48 5,48 5,48 5,48 5,48	25.0 24,7 24,4 24,1 23.9 24,2 24,2 24,7 25,6 26,9	5,44 5,45 5,46 5,47 5,48 5,48 5,47 5,48 5,43 5,43 5,43	24,9 24,5 24,2 23,9 23,7 24,0 24,5 25,4 26,5	5,44 5,46 5,47 5,48 5,49 5,49 5,48 5,48 5,48 5,43 5,38
00h30 01h30 02h30 03h30 04h30 05h30 06h30 07h30 08h30 09h30 10h30 11h30 12h30 13h30	(C) 21,9 21,5 22,3 23,5 24,6 25,5 26,2 26,9 27,3 27,5	25,5 25,2 24,4 24,6 25,9 27,0 27,7 28,2 28,8 29,1	5,42 5,43 5,44 5,46 5,46 5,46 5,46 5,41 5,37 5,34 5,32 5,34 5,32 5,32 5,32 5,29	25,4 25,2 24,9 24,6 24,6 24,9 25,2 27,9 28,7 28,9	5,42 5,45 5,45 5,45 5,45 5,45 5,45 5,45	25,6 25,3 25,0 24,8 24,6 24,9 25,1 27,2 27,8 28,3 28,8 29,0	LY - PMC(525) 144 - 5,43 5,43 5,44 5,45 5,45 5,45 5,46 5,30 5,30 5,30 5,30 5,30 5,30 5,30 5,30	24,8 24,8 24,5 24,1 23,7 24,0 24,5 25,6 27,3 28,5 28,5 29,4 29,6	CCY(100)-a-(.25)-CCY(10	CCY(100) T-/((20)-a-(52)-CCY(100) T-/((20)-a-(52)-CCY(100) 24.9 24.9 24.1 24.7 27.5 28.5 28.5 29.4 29.5	78-100 CCA(100)-TV((20)-au(52)-100 CCA(100)-TV((20)-au(52)-100 CCA(100) CCA(100) August 100 August	24,9 24,6 24,3 24,0 23,9 24,1 24,7 28,8 28,2 29,4 29,6	- CCA(272) - CCA(272)	(000)-9u(1/2)-Eb8(100)-Eb8(100	(000)-ar(\(\)2)-EDS(100) 5.44 5.46 5.49 5.48 5.49 5.48 5.49 5.48 5.49 5.49 5.48 5.49 5.49 5.48 5.49 5.49 5.48 5.49 5.49 5.48 5.49 5.49 5.48 5.49 5.49 5.40 5.40 5.40 5.40 5.40 5.40 5.40 5.40	(001)Sd=-(27)-e-(09)-r-(1001)Sd=-L 24,9 24,9 24,1 24,1 24,1 24,5 25,5 26,9 27,9 28,5 29,1 29,3	- LBS(100)-FV((25)- - LBS(100)-FV((20)- - LBS(25.0 24.7 24.4 24.1 23.9 23.9 24.2 24.7 25.6 26.9 27.9 28.5 29.1 29.3	5,44 5,45 5,45 5,46 5,47 5,48 5,48 5,47 5,48 5,42 5,37 5,33 5,31 5,31 5,32 5,28	24,9 24,5 24,2 23,7 24,0 24,5 25,4 26,5 27,4 28,6 28,9	5,44 5,46 5,47 5,48 5,49 5,49 5,48 5,49 5,48 5,35 5,33 5,33 5,30 5,29
00h30 01h30 02h30 03h30 04h30 05h30 06h30 07h30 09h30 10h30 11h30	(C) (O) 21,9 21,9 21,2 21,2 21,2 22,5 22,5 24,6 25,5 26,9 27,3	25.5 25.5 24.6 24.4 24.4 25.1 25.9 27.0 27.7 28.2 28.2 28.8	14. DMC(12)-bMC(12) 14. DMC(12)-bMC(12) 15.42 5.43 5.44 5.46 5.44 5.41 5.37 5.34 5.32 5.32	25,4 25,2 24,6 24,6 24,6 24,9 25,4 26,2 27,2 27,2 28,3 28,7	5,42 5,45 5,46 5,45 5,46 5,46 5,46 5,43 5,40 5,30 5,30 5,30 5,30	25,6 25,3 25,0 24,8 24,7 24,6 24,9 25,4 26,1 27,2 27,2 27,8 28,3 28,8	5,41 5,43 5,44 5,45 5,45 5,46 5,43 5,40 5,32 5,32 5,32 5,32	24,8 24,5 24,5 23,7 23,7 24,5 25,6 27,3 28,5 28,9 29,4	19.1 19.1 19.1 19.1 19.2 19.2 19.2 19.1 19.1	000)-FX(20)-C(27)-C(20)-C(27)-	78- CCP(100)-ar(52)- 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1	24,9 24,6 24,6 23,9 24,1 25,6 27,1 28,2 28,8 29,4	19.1 19.1 19.1 19.2 19.2 19.2 19.1 19.1	(00) -ar(22) -E LPS(100) -	5,44 5,49 5,49 5,48 5,49 5,48 5,49 5,48 5,48 5,48 5,48 5,48 5,48 5,48 5,48	(000)-RA((20)-EAS(100)-CA((20)-EAS(100)-	5,44 5,45 5,48 5,49 5,48 5,49 5,48 5,49 5,49 5,49 5,42 5,37 5,31 5,33 5,31 5,28	25.0 24.7 24.4 24.1 23.9 24.2 24.7 25.6 26.9 27.9 27.9 27.9 27.9 28.5 29.1	5,44 5,45 5,46 5,47 5,48 5,47 5,48 5,47 5,45 5,42 5,37 5,33 5,33 5,33 5,28	24,9 24,5 24,2 23,7 23,7 24,5 25,4 26,5 27,4 28,0 28,6	5,44 5,46 5,47 5,48 5,49 5,49 5,48 5,46 5,43 5,38 5,33 5,33
00h30 01h30 02h30 03h30 04h30 05h30 06h30 07h30 10h30 11h30 12h30 13h30 14h30 15h30 16h30	(O _o) 21,9 21,6 21,2 21,2 21,2 21,5 22,5 24,6 25,5 26,9 27,3 27,5 27,5 26,9 26,9 26,9	25.5 25.5 25.2 24.6 24.4 24.6 25.1 25.9 27.0 27.7 28.2 28.8 29.1 29.0 28.5	5,42 5,43 5,44 5,45 5,46 5,46 5,46 5,41 5,32 5,29 5,28 5,29 5,29 5,29 5,29 5,29	25,4 24,9 24,7 24,6 24,9 25,4 26,2 27,2 28,3 28,7 28,9 28,6 28,6 28,1	5,42 5,43 5,45 5,45 5,45 5,45 5,45 5,45 5,45	25,6 25,3 25,0 24,8 24,7 24,6 25,4 26,1 27,2 27,8 28,3 28,8 29,0 29,1 28,8 28,4	5,41 5,43 5,44 5,45 5,45 5,43 5,40 5,30 5,32 5,32 5,32 5,28 5,29 5,29 5,29	24,8 24,5 24,1 23,9 23,7 24,5 25,6 27,3 28,5 29,4 29,6 29,5 29,1 28,5	19.1 19.1 19.1 19.1 19.2 1.92 1.92 1.92	CA(100) - L/(20) - L/	19.1 Le.1 Le.1 Le.1 Le.1 Le.1 Le.1 Le.1 Le	24,9 24,6 24,0 23,9 23,9 24,1 24,7 25,6 27,1 28,2 28,8 29,4 29,5 29,5 29,1 28,5	1,91 1,91 1,92 1,92 1,92 1,92 1,91 1,91	24,9 24,6 23,8 27,8 27,8 27,8 27,8 29,1 29,4 29,4 29,4 29,4 29,4 28,5	5,444 5,449 5,48 5,49 5,48 5,49 5,48 5,48 5,48 5,48 5,48 5,48 5,48 5,48	000-PS(429)-EDS(100)-T-X-1000-PS(100)-24,6 24,9 24,0 23,8 24,1 24,1 24,6 25,5 26,9 27,9 29,1 29,0 28,4	5,44 5,45 5,46 5,47 5,48 5,49 5,49 5,40 5,31 5,31 5,28 5,27 5,28 5,27 5,28 5,28 5,27 5,28 5,28 5,28 5,29 5,29 5,29 5,20 5,20 5,20 5,20 5,20 5,20 5,20 5,20	25,00 24,7 24,4 24,1 23,9 27,9 24,2 24,7 25,6 26,9 27,9 29,1 29,3 29,3 29,3 29,3 29,3	5,44 5,45 5,46 5,47 5,48 5,47 5,45 5,47 5,45 5,27 5,33 5,31 5,28 5,27 5,29 5,29 5,29 5,30	24,9 24,5 24,2 23,9 23,7 24,5 25,4 26,5 27,4 28,0 28,6 28,9 29,0 28,6 28,2	5,44 5,44 5,46 5,47 5,48 5,49 5,49 5,48 5,49 5,48 5,38 5,38 5,33 5,30 5,29 5,29 5,30 5,30 5,30
00h30 01h30 02h30 03h30 04h30 05h30 06h30 07h30 08h30 09h30 11h30 12h30 13h30 14h30 15h30	(C) (O) (O) (O) (O) (O) (O) (O) (O) (O) (O	25,5 25,2 24,6 24,4 24,4 25,1 25,9 27,0 28,2 28,8 29,1 29,0	5,42 5,43 5,44 5,46 5,46 5,46 5,46 5,47 5,31 5,32 5,29 5,28 5,28 5,28	25,4 25,2 24,7 24,6 24,9 25,4 26,2 27,9 28,3 28,7 28,9 28,6	5,42 5,45 5,45 5,46 5,46 5,46 5,46 5,46 5,40 5,30 5,30 5,30 5,30 5,30 5,30 5,30 5,3	25,6 25,3 25,0 24,8 24,7 24,6 25,4 26,1 27,8 28,8 29,0 29,1 28,8	5,41 5,43 5,44 5,45 5,46 5,46 5,46 5,46 5,46 5,43 5,40 5,30 5,30 5,30 5,32 5,32 5,32 5,28 5,28	24,8 24,8 24,5 24,1 23,9 23,7 24,5 25,6 27,3 28,5 28,9 29,4 29,5 29,1	19.1 19.1 19.1 19.1 19.1 19.2 19.1 19.1	CQ4(100) -T. ((20) -a. (52) -CCY(100) -T. (20) -a. (52) -CCY(100) -T. (52) -CCY(100) -T. (52)	78- CCA(100)-LV([50)-ar(25)-19.1 [19.1 19.1 19.1 19.1 19.1 19.1 19.1	24,9 24,9 24,6 24,3 24,0 23,9 23,9 24,1 24,7 25,6 27,1 28,2 28,8 29,4 29,5 29,5 29,1	1,91 1,91 1,92 1,92 1,92 1,92 1,92 1,92	24,9 24,6 24,6 24,6 24,6 25,5 26,8 28,5 29,1 29,4 29,4 29,0	5,44 5,49 5,49 5,48 5,49 5,48 5,48 5,48 5,48 5,48 5,48 5,48 5,48	0001Sa 24,0 24,9 24,6 25,5 26,9 28,5 29,1 29,3 29,0	5,44 5,45 5,46 5,47 5,48 5,49 5,48 5,49 5,48 5,49 5,48 5,49 5,49 5,41 5,48 5,49 5,48 5,49 5,49 5,49 5,40 5,40 5,40 5,40 5,40 5,40 5,40 5,40	25,0 25,0 24,7 24,4 24,1 23,9 23,9 24,2 24,7 25,6 26,9 28,5 29,1 29,3 29,3 29,0	5,44 5,45 5,46 5,47 5,48 5,47 5,45 5,47 5,42 5,33 5,31 5,28 5,27 5,27 5,29	24,9 24,5 24,2 23,9 23,7 24,0 24,5 25,4 26,5 27,4 28,6 28,6 29,0 28,6	5,44 5,46 5,47 5,48 5,49 5,48 5,48 5,46 5,35 5,33 5,30 5,29 5,29 5,30
00h30 01h30 02h30 03h30 04h30 05h30 06h30 07h30 08h30 09h30 11h30 12h30 13h30 14h30 15h30 16h30 17h30 18h30 19h30	(C)	25,5 25,5 24,6 24,4 24,4 25,1 25,9 27,0 28,2 28,8 29,1 29,2 29,0 28,5 28,2 29,2 29,0 28,5 28,5 28,7 27,7 27,2	5,42 5,43 5,44 5,46 5,46 5,46 5,46 5,41 5,37 5,32 5,29 5,38 5,29 5,30 5,31 5,32 5,29 5,28 5,28 5,28 5,28 5,28 5,28 5,28 5,28	25,4 25,4 25,2 24,7 24,6 24,6 24,9 25,4 26,2 27,9 28,3 28,7 28,9 28,6 28,1 27,2 26,7	5,42 5,45 5,45 5,46 5,45 5,46 5,45 5,40 5,30 5,30 5,30 5,30 5,30 5,30 5,30 5,3	25,6 25,3 25,0 24,8 24,7 24,6 27,8 28,3 28,8 29,0 29,1 28,8 29,0 29,1 28,8 28,4 28,4 27,6 27,6 27,1	5,41 5,43 5,43 5,44 5,45 5,46 5,46 5,46 5,40 5,30 5,30 5,30 5,32 5,30 5,28 5,28 5,29 5,30 5,28 5,28 5,28 5,28 5,28 5,28 5,28 5,28	24,8 24,8 24,5 24,1 23,9 23,7 24,0 24,5 25,6 27,3 28,5 28,9 29,4 29,5 29,1 28,5 28,5 29,1 28,5 27,4 26,7	1,91 1,91 1,91 1,92 1,92 1,92 1,92 1,92	001, ar. (20), a	1,91 1,91 1,92 1,92 1,92 1,92 1,92 1,92	24,9 24,6 24,0 23,9 23,9 24,1 24,7 25,6 27,1 28,2 28,8 29,4 29,5 29,1 28,5 28,0 27,4 28,5 28,0 27,4 28,5 28,6	1,91 1,91 1,92 1,92 1,92 1,92 1,92 1,91 1,91	24,9 24,6 24,6 24,6 24,6 25,5 26,8 28,5 29,1 29,4 29,4 29,0 28,5 28,0 28,5 28,5 28,5 28,5 28,5 28,5 28,5 28,5	5,44 5,48 5,49 5,48 5,49 5,48 5,49 5,48 5,48 5,48 5,48 5,48 5,48 5,48 5,48	0001)Sd=-(20)-ar(20)-T-(20)-ar(20)-24,9 24,9 24,6 25,5 26,9 28,5 29,1 29,4 29,0 28,4 28,0 29,0 28,4 28,0 29,0 28,4 28,0 28,4 28,0 28,4 28,0 28,4 28,6 28,6 28,7 28,7 28,7 28,7 28,7 28,7 28,7 28,7	5,44 5,45 5,46 5,47 5,48 5,49 5,48 5,49 5,48 5,49 5,48 5,49 5,33 5,33 5,27 5,27 5,28 5,27 5,28 5,27 5,28 5,27 5,28 5,27 5,28 5,27 5,28 5,27 5,28 5,27 5,28 5,29 5,29 5,29 5,29 5,29 5,29 5,29 5,29	25,0 25,0 24,7 24,4 24,1 23,9 23,9 24,2 24,7 25,6 26,9 28,5 29,1 29,3 29,0 28,4 28,0 28,4 28,0 28,4 28,0 28,4 28,6 28,6 28,7 28,7 28,7 28,7 28,7 28,7 28,7 28,7	5,44 5,45 5,46 5,47 5,48 5,47 5,47 5,45 5,47 5,42 5,33 5,31 5,28 5,27 5,29 5,30 5,32 5,33 5,34 5,34 5,34 5,34 5,33	24,9 24,5 24,2 23,9 23,7 24,5 25,4 26,5 27,4 28,6 28,6 28,9 29,0 28,6 28,2 27,2 26,6	5,44 5,46 5,47 5,48 5,49 5,48 5,48 5,48 5,35 5,33 5,30 5,29 5,30 5,31 5,32 5,34 5,34 5,34
00h30 01h30 02h30 03h30 04h30 05h30 06h30 07h30 08h30 10h30 11h30 12h30 13h30 14h30 15h30 14h30 15h30 14h30	(C) _o) axterna externa extern	25,5 25,5 25,2 24,4 24,6 25,1 25,9 27,7 28,2 29,0 29,1 29,2 28,2 29,2 28,2 29,2 29,2 28,2 27,7	5,42 5,43 5,44 5,45 5,46 5,46 5,46 5,47 5,37 5,32 5,28 5,28 5,28 5,29 5,31 5,31 5,32	25,4 25,2 24,9 24,7 24,6 24,9 25,4 26,2 27,9 28,3 28,9 28,9 28,6 28,9 27,2 27,2	5,42 5,43 5,45 5,45 5,45 5,45 5,43 5,43 5,43	25,6 25,3 25,0 24,8 24,7 24,6 24,9 25,4 26,1 27,2 27,8 28,3 28,8 29,0 29,1 28,8 28,0 27,6	5,41 5,43 5,43 5,44 5,45 5,45 5,46 5,36 5,33 5,32 5,30 5,28 5,28 5,28 5,28 5,29 5,31 5,31 5,33	24,8 24,8 24,5 24,1 23,9 24,5 24,1 23,7 24,0 24,5 25,6 27,3 28,5 28,9 29,6 29,5 29,1 28,0 27,4	(20) PO CC (100) P	COV(100) -u.(22)-CCV(100) -u.(22)-CCV(100) -u.(22)-CCV(100) -u.(22)-20	75-7-100 Par(25)-100 Par(25)-1	24,9 24,6 24,3 24,0 23,9 24,1 24,7 25,6 29,5 29,1 28,2 28,8 29,5 29,5 29,1 28,0 27,4	(\$25 \ \frac{9}{2} \ \frac{1}{2} \ \frac{9}{2} \ \frac{1}{2} \ \frac{1}{	(00 C) O G G G G G G G G G G G G G G G G G G	5,44 5,48 5,49 5,48 5,49 5,48 5,49 5,48 5,49 5,48 5,49 5,27 5,23 5,27 5,27 5,28 5,30 5,31 5,27 5,27 5,28 5,30 5,31 5,27 5,27 5,28 5,30 5,27 5,27 5,28 5,30 5,27 5,28 5,27 5,28 5,27 5,28 5,27 5,28 5,27 5,28 5,29 5,29 5,29 5,29 5,29 5,29 5,29 5,29	0001)Sd312(92)-eu(92)	5,44 5,45 5,46 5,47 5,48 5,46 5,47 5,48 5,46 5,47 5,48 5,46 5,47 5,27 5,23 5,27 5,27 5,28 5,27 5,28 5,30 5,31 5,27 5,28 5,31 5,27 5,28 5,27 5,28 5,37 5,28 5,27 5,28 5,37 5,28 5,29 5,29 5,29 5,29 5,29 5,29 5,29 5,29	25.0 24,7 24,4 24,1 23,9 24,2 24,7 25,6 26,9 27,9 28,5 29,1 29,3 29,3 29,0 28,4 28,0 27,4	5,44 5,45 5,46 5,47 5,48 5,47 5,48 5,47 5,45 5,42 5,37 5,33 5,31 5,27 5,27 5,29 5,30 5,32 5,32 5,32 5,33	24,9 24,5 24,2 23,9 23,7 24,0 24,5 25,4 28,0 28,6 28,9 29,0 28,6 28,2 27,8 27,2	5,44 5,46 5,47 5,48 5,49 5,48 5,48 5,38 5,35 5,33 5,30 5,29 5,29 5,30 5,31 5,32 5,32 5,32 5,33
00h30 01h30 02h30 02h30 03h30 06h30 07h30 08h30 09h30 11h30 12h30 13h30 14h30 15h30 16h30 17h30 18h30 17h30	21,9 21,6 21,6 21,2 21,5 22,3 23,5 24,6 25,5 26,9 27,3 27,5 27,5 27,5 27,5 27,5 27,5 27,5 27,5	25.5 25.2 24.9 24.6 25.1 24.4 24.4 24.9 27.0 27.7 28.2 29.0 29.0 29.0 27.7 28.2 29.0 29.0 27.7 28.2 29.0 27.7 28.2 29.0 27.7 28.2 29.0 27.7 28.2 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29	5,42 5,43 5,44 5,45 5,46 5,46 5,46 5,46 5,41 5,37 5,34 5,29 5,29 5,28 5,29 5,30 5,31 5,32 5,33 5,33 5,33 5,33 5,33 5,33	25,4 25,2 24,9 24,6 24,6 24,6 24,9 25,2 27,2 27,9 28,9 28,7 28,9 28,1 27,7 27,7 26,3	5,42 5,45 5,45 5,45 5,46 5,45 5,46 5,45 5,46 5,45 5,46 5,45 5,30 5,30 5,30 5,30 5,30 5,30 5,30 5,3	25,6 25,3 25,0 24,8 24,7 24,6 24,9 25,1 27,2 27,8 28,8 29,0 29,1 28,8 29,0 29,1 28,4 28,0 27,6 27,6 27,6	5,41 5,43 5,43 5,44 5,45 5,45 5,46 5,46 5,30 5,30 5,30 5,30 5,30 5,30 5,30 5,30	24,8 24,5 24,1 23,7 24,0 24,5 22,0 25,6 27,3 28,5 29,4 29,6 29,5 29,5 28,0 27,7 28,5 28,0 27,7 28,5 28,0	1,91 1,91 1,92 1,92 1,92 1,92 1,92 1,92	COP (92) Le (09) N-T-(001) POO - L 24.9 24.6 24.2 24.0 25.7 27.5 28.5 29.4 29.0 27.3 27.3 26.7 26.1 26.7 26.1	1,91 1,91 1,92 1,92 1,92 1,92 1,92 1,92	24,9 24,6 24,3 24,0 23,9 24,1 28,2 28,8 29,4 29,6 29,5 29,1 28,5 29,1 28,5 29,1 28,5 29,1 26,7 26,2	L91 1,91 1,91 1,92 1,92 1,92 1,92 1,92 1,	(00) Pod H (92) pe (00) Sod H (22) pe (00) Sod H (2	5,444 5,467 5,489 5,499 5,489 5,490	(001) Sdu - (02) NT-(001) Sdu - 1	5,44 5,45 5,46 5,47 5,48 5,48 5,48 5,48 5,48 5,48 5,48 5,48	25.0 24,7 24,4 24,1 24,2 23,9 23,9 24,2 25,6 26,9 27,9 29,3 29,3 29,3 29,3 29,3 29,3 29,3 29	5,44 5,45 5,46 5,47 5,48 5,48 5,47 5,48 5,42 5,37 5,33 5,31 5,28 5,27 5,29 5,29 5,30 5,30 5,32 5,34 5,36 5,36 5,36 5,37 5,30 5,30 5,30 5,30 5,30 5,30 5,30 5,30	24,9 24,5 24,2 23,7 23,7 24,0 24,5 25,4 26,5 27,4 28,6 28,9 29,0 28,6 28,2 27,8 27,2 26,6 26,1	5.44 5.46 5.47 5.48 5.49 5.49 5.43 5.33 5.30 5.30 5.29 5.30 5.30 5.31 5.32 5.31 5.32 5.34 5.37 5.37

Tabela B.2. T_i (°C) e TR (s) - Edifício II - sse4 - 5 ren/h; Sabine (1000 Hz)

(conclusão)

Tempo (h)	Temperatura externa (°C)	7,- PLC(10)-ar(75)-GEA(12,5)	TR - PLC(10)-ar(75)-GEA(12,5)	T _i - PLC(10)-LVI(50)-ar(25)-GEA(12,5)	TR - PLC(10)-LVI(50)-ar(25)-GEA(12,5)	T _i - PLC(12)-ar(90)-GEA(15)	TR - PLC(12)-ar(90)-GEA(15)	T ₁ - PLC(12)-LVI(50)-ar(40)-GEA(15)	TR - PLC(12)-LVI(50)-ar(40)-GEA(15)	<i>T_i</i> - PMC(75)-ar(75)-PLC(10)	<i>TR</i> - PMC(75)-ar(75)-PLC(10)	T _i - PMC(75)-LVI(50)-ar(25)-PLC(10)	TR - PMC(75)-LVI(50)-ar(25)-PLC(10)	T _i - PMC(75)-ar(75)-GEA(12,5)	7R - PMC(75)-ar(75)-GEA(12,5)	T _i - PMC(75)-LVI(50)-ar(25)-GEA(12,5)	7R - PMC(75)-LVI(50)-ar(25)-GEA(12,5)	7,- PMC(100)	<i>TR</i> - PMC(100)	T _i - CCA(100)-ar(75)-PLC(10)	7R - CCA(100)-ar(75)-PLC(10)
00h30	21,9	23,8	3,84	24,3	3,83	23,8	3,84	24,3	3,83	24,9	3,47	24,7	3,47	24,8	3,82	24,6	3,82	25,2	5,43	24,6	3,47
01h30 02h30	21,6 21,3	23,4	3,85 3,85	23,9 23,6	3,84 3,84	23,5 23,1	3,85 3,85	24,0 23,6	3,84 3,84	24,5 24,1	3,48 3,48	24,3 24,0	3,48 3,49	24,5 24,1	3,83	24,2 23,9	3,83	24,8 24,4	5,45 5,46	24,2	3,48
03h30	21,2	22,8	3,86	23,3	3,85	22,8	3,86	23,3	3,85	23,8	3,49	23,7	3,49	23,8	3,84	23,6	3,84	24,1	5,47	23,6	3,49
04h30	21,2	22,6	3,86	23,1	3,85	22,7	3,86	23,2	3,85	23,6	3,49	23,5	3,49	23,6	3,84	23,4	3,85	23,9	5,48	23,4	3,50
05h30 06h30	21,5 22,3	22,6 22,9	3,86 3,86	23,1	3,85 3,85	22,7	3,86	23,2	3,85 3,85	23,6 23,8	3,49	23,5	3,50 3,49	23,5 23,8	3,85 3,84	23,4	3,85 3,84	23,8	5,48 5,48	23,4	3,50 3,49
07h30	23,5	23,6	3,84	24,1	3,83	23,6	3,84	24,1	3,83	24,4	3,48	24,4	3,48	24,3	3,83	24,3	3,83	24,6	5,46	24,2	3,48
08h30	24,6	25,4	3,81	25,3	3,81	25,2	3,81	25,3	3,81	25,4	3,46	25,5	3,46	25,4	3,81	25,5	3,81	25,4	5,43	25,3	3,47
09h30 10h30	25,5 26,2	29,2 31,1	3,73 3,68	27,7 29,5	3,76 3,72	28,7 30,8	3,74 3,69	27,5 29,3	3,76 3,72	27,0 28,3	3,43 3,41	27,3 28,7	3,43 3,40	27,1 28,3	3,77	27,5 28,8	3,76 3,74	26,7 27,9	5,38 5,33	27,0 28,4	3,43
11h30	26,9	30,2	3,71	29,9	3,71	30,2	3,71	29,7	3,72	29,1	3,40	29,2	3,39	29,2	3,73	29,3	3,73	28,9	5,29	29,2	3,39
12h30 13h30	27,3 27,5	30,7	3,69 3,68	30,0	3,71 3,70	30,5	3,70	30,0	3,71 3,71	29,8 30,1	3,38	29,7	3,38	29,9 30,2	3,71	29,8 29,9	3,71 3,71	29,7	5,26 5,24	29,8 30,0	3,38
14h30	27,5	30,5	3,70	29,9	3,71	30,5	3,70	29,9	3,71	30,1	3,38	29,8	3,38	30,2	3,71	29,8	3,71	30,2	5,24	29,9	3,38
15h30	26,9	29,9	3,71	29,4	3,72	29,8	3,71	29,4	3,72	29,8	3,38	29,3	3,39	29,8	3,71	29,3	3,72	29,8	5,25	29,5	3,39
16h30 17h30	26,1 25,5	29,1 28,2	3,73 3,74	28,6 28,0	3,74 3,75	29,1 28,2	3,73 3,74	28,6 28,0	3,74 3,75	29,2 28,7	3,39	28,7 28,1	3,40 3,41	29,2 28,6	3,72 3,73	28,6 28,0	3,74 3,75	29,3 28,8	5,27 5,28	28,9 28,3	3,40 3,41
18h30	24,7	27,2	3,76	27,2	3,76	27,3	3,76	27,3	3,76	28,0	3,41	27,4	3,42	27,9	3,75	27,4	3,76	28,2	5,31	27,6	3,42
19h30 20h30	23,9	26,3 25,5	3,78	26,5 25,8	3,78 3,79	26,4 25,6	3,78	26,5 25,8	3,78 3,79	27,2 26,5	3,43	26,7 26,1	3,43 3,45	27,2 26,5	3,76 3,78	26,6 26,0	3,78	27,5 26,8	5,33 5,36	26,9 26,2	3,43
21h30	22,7	24,9	3,81	25,2	3,81	24,9	3,81	25,2	3,81	26,0	3,45	25,5	3,46	25,9	3,79	25,4	3,80	26,3	5,38	25,6	3,45
22h30 23h30	22,4 22,1	24,4 24,0	3,82 3,83	24,8 24,4	3,82 3,82	24,5 24,0	3,82	24,8 24,4	3,82 3,82	25,5 25,1	3,46 3,46	25,1 24,8	3,46 3,47	25,5 25,0	3,80	25,0 24,7	3,81	25,8 25,4	5,40 5,42	25,2 24,8	3,46 3,47
Tempo (h)	Temperatura externa (°C)	CA(100)-LVI(50)-ar(25)-PLC(10)	:CA(100)-LVI(50)-ar(25)-PLC(10)	CCA(100)-ar(75)-GEA(12,5)	CCA(100)-ar(75)-GEA(12,5)	A(100)-LVI(50)-ar(25)-GEA(12,5)	CCA(100)-LVI(50)-ar(25)-GEA(12,5)	T_i - CCA(100)	<i>TR</i> - CCA(100)	T_i - EPS(100)-ar(75)-PLC(10)	- EPS(100)-ar(75)-PLC(10)	EPS(100)-LVI(50)-ar(25)-PLC(10)	EPS(100)-LVI(50)-ar(25)-PLC(10)	EPS(100)-ar(75)-GEA(12,5)	- EPS(100)-ar(75)-GEA(12,5)	S(100)-LVI(50)-ar(25)-GEA(12,5)	PS(100)-LVI(50)-ar(25)-GEA(12,5)	T_i - EPS(100)	TR - EPS(100)	<i>T_i</i> - ATC(150)	- ATC(150)
	Tempera	T_i - CCA(100)-	<i>TR</i> - CCA(100)-	T_i - CCA(1)	<i>TR</i> - CCA(1	T_i - CCA(100)-L	<i>TR</i> - CCA(100)-L	T_{l}	TR	T_i - EPS(1	<i>TR</i> - EPS(1)	T_i - EPS(100)-L'	<i>TR</i> - EPS(100)-	T_i - EPS(10	<i>TR</i> - EPS(10	T_i - EPS(100)-LV	<i>TR</i> - EPS(100)-LV	T_i - I	TR-	T_l	TR
00h30	21,9	O - ¹ L	3,47	24,5	3,82	24,5	3,82	24,4	1,91	24,4	3,48	24,5	3,48	24,3	3,83	24,4 24,4	3,83	24,8	5,44	24,9	5,44
		T_i - C	TR - C	T_i -	TR-	T_i - CC	TR-				TR	T_i -	<i>TR</i> - 1	T_i -	TR	T_i - EF	TR - E				
00h30 01h30 02h30 03h30	21,9 21,6 21,3 21,2	24,6 24,3 23,9 23,7	3,47 3,48 3,49 3,49	24,5 24,2 23,8 23,5	3,82 3,83 3,84 3,84	24,5 24,2 23,8 23,6	3,82 3,83 3,84 3,84	24,4 24,1 23,7 23,4	1,91 1,92 1,92 1,92	24,4 24,1 23,8 23,5	3,48 3,49 3,49 3,49	24,5 24,2 23,9 23,6	3,48 3,48 3,49 3,49	24,3 24,0 23,6 23,4	3,83 3,84 3,84 3,85	24,4 24,1 23,7 23,5	3,83 3,83 3,84 3,85	24,8 24,5 24,1 23,9	5,44 5,46 5,47 5,48	24,9 24,5 24,2 23,9	5,44 5,46 5,47 5,48
00h30 01h30 02h30 03h30 04h30	21,9 21,6 21,3 21,2 21,2	24,6 24,3 23,9 23,7 23,5	3,47 3,48 3,49 3,49 3,50	24,5 24,2 23,8 23,5 23,3	3,82 3,83 3,84 3,84 3,85	24,5 24,2 23,8 23,6 23,4	3,82 3,83 3,84 3,84 3,85	24,4 24,1 23,7 23,4 23,2	1,91 1,92 1,92 1,92 1,92	24,4 24,1 23,8 23,5 23,3	3,48 3,49 3,49 3,49 3,50	24,5 24,2 23,9 23,6 23,4	3,48 3,48 3,49 3,49 3,50	24,3 24,0 23,6 23,4 23,2	3,83 3,84 3,84 3,85 3,85	24,4 24,1 23,7 23,5 23,3	3,83 3,83 3,84 3,85 3,85	24,8 24,5 24,1 23,9 23,7	5,44 5,46 5,47 5,48 5,49	24,9 24,5 24,2 23,9 23,7	5,44 5,46 5,47 5,48 5,49
00h30 01h30 02h30 03h30 04h30 05h30 06h30	21,9 21,6 21,3 21,2 21,2 21,5 22,3	24,6 24,3 23,9 23,7 23,5 23,5 23,8	3,47 3,48 3,49 3,49 3,50 3,50 3,49	24,5 24,2 23,8 23,5 23,3 23,3 23,6	3,82 3,83 3,84 3,84 3,85 3,85 3,85	24,5 24,2 23,8 23,6 23,4 23,4 23,7	3,82 3,83 3,84 3,84 3,85 3,85 3,85 3,85	24,4 24,1 23,7 23,4 23,2 23,2 23,5	1,91 1,92 1,92 1,92 1,92 1,92 1,92	24,4 24,1 23,8 23,5 23,3 23,3 23,6	3,48 3,49 3,49 3,50 3,50 3,50 3,49	24,5 24,2 23,9 23,6 23,4 23,4 23,7	3,48 3,48 3,49 3,49 3,50 3,50 3,49	24,3 24,0 23,6 23,4 23,2 23,2 23,5	3,83 3,84 3,84 3,85 3,85 3,85 3,85	24,4 24,1 23,7 23,5 23,3 23,3 23,6	3,83 3,83 3,84 3,85 3,85 3,85 3,85 3,85	24,8 24,5 24,1 23,9 23,7 23,7 23,9	5,44 5,46 5,47 5,48 5,49 5,49 5,48	24,9 24,5 24,2 23,9 23,7 23,7 24,0	5,44 5,46 5,47 5,48 5,49 5,49 5,48
00h30 01h30 02h30 03h30 04h30 05h30 06h30 07h30	21,9 21,6 21,3 21,2 21,2 21,5 22,3 23,5	24,6 24,3 23,9 23,7 23,5 23,5 23,8 24,3	3,47 3,48 3,49 3,49 3,50 3,50 3,49 3,48	24,5 24,2 23,8 23,5 23,3 23,3 23,6 24,2	3,82 3,83 3,84 3,84 3,85 3,85 3,85 3,84 3,83	24,5 24,2 23,8 23,6 23,4 23,4 23,7 24,3	3,82 3,83 3,84 3,84 3,85 3,85 3,85 3,84 3,83	24,4 24,1 23,7 23,4 23,2 23,2 23,5 24,1	1,91 1,92 1,92 1,92 1,92 1,92 1,92 1,92	24,4 24,1 23,8 23,5 23,3 23,3 23,6 24,2	3,48 3,49 3,49 3,50 3,50 3,50 3,49 3,48	24,5 24,2 23,9 23,6 23,4 23,4 23,7 24,3	3,48 3,48 3,49 3,49 3,50 3,50 3,49 3,48	24,3 24,0 23,6 23,4 23,2 23,2 23,5 24,2	3,83 3,84 3,84 3,85 3,85 3,85 3,85 3,85 3,85	24,4 24,1 23,7 23,5 23,3 23,3 23,6 24,2	3,83 3,83 3,83 3,84 3,85 3,85 3,85 3,85 3,84 3,83	24,8 24,5 24,1 23,9 23,7 23,7 23,9 24,5	5,44 5,46 5,47 5,48 5,49 5,49 5,48 5,46	24,9 24,5 24,2 23,9 23,7 23,7 24,0 24,5	5,44 5,46 5,47 5,48 5,49 5,49 5,48 5,46
00h30 01h30 02h30 03h30 04h30 05h30 06h30	21,9 21,6 21,3 21,2 21,2 21,5 22,3	24,6 24,3 23,9 23,7 23,5 23,5 23,8	3,47 3,48 3,49 3,49 3,50 3,50 3,49	24,5 24,2 23,8 23,5 23,3 23,3 23,6	3,82 3,83 3,84 3,84 3,85 3,85 3,85	24,5 24,2 23,8 23,6 23,4 23,4 23,7	3,82 3,83 3,84 3,84 3,85 3,85 3,85 3,85	24,4 24,1 23,7 23,4 23,2 23,2 23,5	1,91 1,92 1,92 1,92 1,92 1,92 1,92	24,4 24,1 23,8 23,5 23,3 23,3 23,6	3,48 3,49 3,49 3,50 3,50 3,50 3,49	24,5 24,2 23,9 23,6 23,4 23,4 23,7	3,48 3,48 3,49 3,49 3,50 3,50 3,49	24,3 24,0 23,6 23,4 23,2 23,2 23,5	3,83 3,84 3,84 3,85 3,85 3,85 3,85	24,4 24,1 23,7 23,5 23,3 23,3 23,6	3,83 3,83 3,84 3,85 3,85 3,85 3,85 3,85	24,8 24,5 24,1 23,9 23,7 23,7 23,9	5,44 5,46 5,47 5,48 5,49 5,49 5,48	24,9 24,5 24,2 23,9 23,7 23,7 24,0	5,44 5,46 5,47 5,48 5,49 5,49 5,48
00h30 01h30 02h30 03h30 04h30 05h30 06h30 07h30 08h30 09h30	21,9 21,6 21,3 21,2 21,5 22,3 23,5 24,6 25,5 26,2	24,6 24,3 23,9 23,7 23,5 23,5 23,5 24,3 25,5 27,3 28,6	3,47 3,48 3,49 3,50 3,50 3,50 3,49 3,48 3,46 3,43 3,40	24,5 24,2 23,8 23,5 23,3 23,6 24,2 25,3 27,1 28,5	3,82 3,83 3,84 3,84 3,85 3,85 3,85 3,84 3,83 3,81 3,77 3,74	24,5 24,2 23,8 23,6 23,4 23,4 23,7 24,3 25,5 27,5 28,8	3,82 3,83 3,84 3,84 3,85 3,85 3,85 3,81 3,76 3,74	24,4 24,1 23,7 23,4 23,2 23,2 23,5 24,1 25,2 27,3 29,0	1,91 1,92 1,92 1,92 1,92 1,92 1,92 1,92	24,4 24,1 23,8 23,5 23,3 23,3 23,6 24,2 25,4 27,4 28,8	3,48 3,49 3,49 3,50 3,50 3,50 3,48 3,46 3,43 3,40	24,5 24,2 23,9 23,6 23,4 23,4 23,7 24,3 25,5 27,4 28,7	3,48 3,48 3,49 3,49 3,50 3,50 3,49 3,48 3,46 3,43 3,40	24,3 24,0 23,6 23,4 23,2 23,2 23,5 24,2 25,5 27,7 29,0	3,83 3,84 3,84 3,85 3,85 3,85 3,85 3,85 3,83 3,81 3,76 3,73	24,4 24,1 23,7 23,5 23,3 23,3 23,6 24,2 25,5 27,6 28,9	3,83 3,83 3,83 3,84 3,85 3,85 3,85 3,84 3,83 3,81 3,76 3,73	24,8 24,5 24,1 23,9 23,7 23,7 23,9 24,5 25,4 26,8 27,8	5,44 5,46 5,47 5,48 5,49 5,49 5,48 5,46 5,43 5,38 5,33	24,9 24,5 24,2 23,9 23,7 24,0 24,5 25,4 26,5 27,4	5,44 5,46 5,47 5,48 5,49 5,49 5,46 5,43 5,38 5,35
00h30 01h30 02h30 03h30 04h30 05h30 06h30 07h30 08h30 09h30 10h30 11h30	21,9 21,6 21,3 21,2 21,5 22,3 23,5 24,6 25,5 26,2 26,9	24,6 24,3 23,9 23,7 23,5 23,5 23,8 24,3 25,5 27,3 28,6 29,2	3,47 3,48 3,49 3,50 3,50 3,50 3,49 3,48 3,46 3,43 3,40 3,39	24,5 24,2 23,8 23,5 23,3 23,6 24,2 25,3 27,1 28,5 29,3	3,82 3,83 3,84 3,84 3,85 3,85 3,85 3,81 3,77 3,74 3,73	24,5 24,2 23,8 23,6 23,4 23,7 24,3 25,5 27,5 28,8 29,2	3,82 3,83 3,84 3,84 3,85 3,85 3,85 3,81 3,76 3,74 3,73	24,4 24,1 23,7 23,4 23,2 23,2 23,5 24,1 25,2 27,3 29,0 29,7	1,91 1,92 1,92 1,92 1,92 1,92 1,92 1,92	24,4 24,1 23,8 23,5 23,3 23,3 23,6 24,2 25,4 27,4 28,8 29,4	3,48 3,49 3,49 3,50 3,50 3,50 3,48 3,46 3,43 3,40 3,39	24,5 24,2 23,9 23,6 23,4 23,7 24,3 25,5 27,4 28,7 29,3	3,48 3,49 3,49 3,50 3,50 3,50 3,49 3,48 3,46 3,43 3,40 3,39	24,3 24,0 23,6 23,4 23,2 23,2 23,5 24,2 25,5 27,7 29,0 29,4	3,83 3,84 3,84 3,85 3,85 3,85 3,85 3,85 3,81 3,76 3,73 3,73	24,4 24,1 23,7 23,5 23,3 23,3 23,6 24,2 25,5 27,6 28,9 29,3	3,83 3,83 3,84 3,85 3,85 3,85 3,85 3,81 3,76 3,73 3,72	24,8 24,5 24,1 23,9 23,7 23,7 23,9 24,5 25,4 26,8 27,8 28,5	5,44 5,46 5,47 5,48 5,49 5,49 5,49 5,46 5,43 5,38 5,33 5,31	24,9 24,5 24,2 23,9 23,7 24,0 24,5 25,4 26,5 27,4 28,0	5,44 5,46 5,47 5,48 5,49 5,49 5,48 5,43 5,38 5,33 5,33
00h30 01h30 02h30 03h30 04h30 05h30 06h30 07h30 08h30 09h30 10h30	21,9 21,6 21,3 21,2 21,5 22,3 23,5 24,6 25,5 26,2	24,6 24,3 23,9 23,7 23,5 23,5 23,5 24,3 25,5 27,3 28,6	3,47 3,48 3,49 3,50 3,50 3,50 3,49 3,48 3,46 3,43 3,40	24,5 24,2 23,8 23,5 23,3 23,6 24,2 25,3 27,1 28,5	3,82 3,83 3,84 3,84 3,85 3,85 3,85 3,84 3,83 3,81 3,77 3,74	24,5 24,2 23,8 23,6 23,4 23,4 23,7 24,3 25,5 27,5 28,8	3,82 3,83 3,84 3,84 3,85 3,85 3,85 3,81 3,76 3,74	24,4 24,1 23,7 23,4 23,2 23,2 23,5 24,1 25,2 27,3 29,0	1,91 1,92 1,92 1,92 1,92 1,92 1,92 1,92	24,4 24,1 23,8 23,5 23,3 23,3 23,6 24,2 25,4 27,4 28,8	3,48 3,49 3,49 3,50 3,50 3,50 3,48 3,46 3,43 3,40	24,5 24,2 23,9 23,6 23,4 23,4 23,7 24,3 25,5 27,4 28,7	3,48 3,48 3,49 3,49 3,50 3,50 3,49 3,48 3,46 3,43 3,40	24,3 24,0 23,6 23,4 23,2 23,2 23,5 24,2 25,5 27,7 29,0	3,83 3,84 3,84 3,85 3,85 3,85 3,85 3,85 3,83 3,81 3,76 3,73	24,4 24,1 23,7 23,5 23,3 23,3 23,6 24,2 25,5 27,6 28,9	3,83 3,83 3,83 3,84 3,85 3,85 3,85 3,84 3,83 3,81 3,76 3,73	24,8 24,5 24,1 23,9 23,7 23,7 23,9 24,5 25,4 26,8 27,8	5,44 5,46 5,47 5,48 5,49 5,49 5,48 5,46 5,43 5,38 5,33	24,9 24,5 24,2 23,9 23,7 24,0 24,5 25,4 26,5 27,4	5,44 5,46 5,47 5,48 5,49 5,49 5,46 5,43 5,38 5,35
00h30 01h30 02h30 03h30 04h30 05h30 06h30 07h30 09h30 10h30 11h30 12h30 13h30	21,9 21,6 21,3 21,2 21,2 21,5 22,3 23,5 24,6 25,5 26,2 26,9 27,3 27,5 27,5	24,6 24,3 23,9 23,7 23,5 23,5 23,8 24,3 25,5 27,3 28,6 29,2 29,7 29,9 29,8	3,47 3,48 3,49 3,50 3,50 3,50 3,49 3,48 3,46 3,43 3,40 3,39 3,38 3,38 3,38	24,5 24,2 23,8 23,5 23,3 23,6 24,2 25,3 27,1 28,5 29,3 29,9 30,1 30,0	3,82 3,83 3,84 3,84 3,85 3,85 3,84 3,83 3,71 3,77 3,74 3,73 3,71 3,71	24,5 24,2 23,8 23,6 23,4 23,7 24,3 25,5 27,5 28,8 29,2 29,8 29,9 29,8	3,82 3,83 3,84 3,84 3,85 3,85 3,84 3,83 3,71 3,76 3,74 3,73 3,71 3,71	24,4 24,1 23,7 23,4 23,2 23,5 24,1 25,2 27,3 29,0 29,7 30,1 30,3 30,2	1,91 1,92 1,92 1,92 1,92 1,92 1,92 1,91 1,90 1,88 1,88 1,87 1,88	24,4 24,1 23,8 23,5 23,3 23,3 23,6 24,2 25,4 27,4 28,8 29,4 29,8 29,9 29,7	3,48 3,49 3,49 3,50 3,50 3,50 3,48 3,46 3,43 3,40 3,39 3,38 3,38 3,38	24,5 24,2 23,9 23,6 23,4 23,7 24,3 25,5 27,4 28,7 29,8 29,9 29,7	3,48 3,48 3,49 3,50 3,50 3,50 3,49 3,48 3,46 3,43 3,40 3,39 3,38 3,38 3,38	24,3 24,0 23,6 23,4 23,2 23,2 23,5 24,2 25,5 27,7 29,0 29,4 29,8 30,0 29,7	3,83 3,84 3,84 3,85 3,85 3,85 3,85 3,85 3,85 3,76 3,76 3,77 3,71 3,71 3,71	24,4 24,1 23,7 23,5 23,3 23,3 23,6 24,2 25,5 27,6 28,9 29,3 29,8 29,9 29,7	3,83 3,83 3,84 3,85 3,85 3,85 3,85 3,84 3,83 3,76 3,73 3,71 3,71 3,71 3,72	24,8 24,5 24,1 23,9 23,7 23,7 23,9 24,5 25,4 26,8 27,8 28,5 29,2 29,4 29,4	5,44 5,46 5,47 5,48 5,49 5,48 5,46 5,43 5,38 5,38 5,31 5,28 5,27 5,27	24,9 24,5 24,2 23,9 23,7 24,0 24,5 25,4 26,5 27,4 28,0 28,9 29,0	5,44 5,46 5,47 5,48 5,49 5,48 5,46 5,43 5,38 5,35 5,33 5,35 5,30 5,29 5,29
00h30 01h30 02h30 03h30 04h30 05h30 06h30 07h30 08h30 09h30 11h30 12h30 13h30 14h30	21,9 21,6 21,3 21,2 21,5 22,3 23,5 24,6 25,5 26,2 26,9 27,3 27,5 26,9	24,6 24,3 23,9 23,7 23,5 23,5 23,8 24,3 25,5 27,3 28,6 29,2 29,7 29,9 29,8 29,3	3,47 3,48 3,49 3,50 3,50 3,49 3,48 3,46 3,43 3,40 3,38 3,38 3,38 3,38 3,39	24,5 24,2 23,8 23,5 23,3 23,6 24,2 25,3 27,1 28,5 29,9 30,1 30,0 29,5	3,82 3,83 3,84 3,84 3,85 3,85 3,85 3,84 3,81 3,77 3,74 3,73 3,71 3,71 3,71 3,72	24,5 24,2 23,8 23,6 23,4 23,7 24,3 25,5 27,5 28,8 29,2 29,8 29,9 29,8 29,3	3,82 3,83 3,84 3,84 3,85 3,85 3,85 3,81 3,76 3,74 3,73 3,71 3,71 3,71 3,72	24,4 24,1 23,7 23,4 23,2 23,2 23,5 24,1 25,2 27,3 29,0 29,7 30,1 30,3 30,2 29,6	1,91 1,92 1,92 1,92 1,92 1,92 1,92 1,91 1,90 1,88 1,88 1,88 1,88 1,88	24,4 24,1 23,8 23,5 23,3 23,3 23,6 24,2 25,4 27,4 28,8 29,4 29,8 29,9 29,7 29,2	3,48 3,49 3,49 3,50 3,50 3,49 3,48 3,46 3,43 3,40 3,39 3,38 3,38 3,38 3,39	24,5 24,2 23,9 23,6 23,4 23,7 24,3 25,5 27,4 28,7 29,3 29,9 29,7 29,2	3,48 3,49 3,49 3,50 3,50 3,49 3,48 3,46 3,43 3,40 3,39 3,38 3,38 3,38 3,39	24,3 24,0 23,6 23,4 23,2 23,2 23,5 24,2 25,5 27,7 29,0 29,4 30,0 29,7 29,1	3,83 3,84 3,84 3,85 3,85 3,85 3,85 3,81 3,76 3,73 3,72 3,71 3,71 3,72 3,73	24,4 24,1 23,7 23,5 23,3 23,6 24,2 25,5 27,6 28,9 29,8 29,9 29,7 29,2	3,83 3,83 3,84 3,85 3,85 3,85 3,85 3,81 3,76 3,73 3,71 3,71 3,71 3,72 3,73	24,8 24,5 24,1 23,9 23,7 23,7 23,9 24,5 25,4 26,8 27,8 28,5 29,2 29,4 29,1	5,44 5,46 5,47 5,48 5,49 5,49 5,48 5,46 5,43 5,38 5,33 5,31 5,27 5,27 5,27	24,9 24,5 24,2 23,9 23,7 24,5 25,4 26,5 27,4 28,0 28,9 29,0 28,6	5,44 5,46 5,47 5,49 5,49 5,48 5,46 5,38 5,35 5,33 5,30 5,29 5,29 5,30
00h30 01h30 02h30 03h30 04h30 05h30 06h30 07h30 09h30 10h30 11h30 12h30 13h30	21,9 21,6 21,3 21,2 21,2 21,5 22,3 23,5 24,6 25,5 26,2 26,9 27,3 27,5 27,5	24,6 24,3 23,9 23,7 23,5 23,5 23,8 24,3 25,5 27,3 28,6 29,2 29,7 29,9 29,8	3,47 3,48 3,49 3,50 3,50 3,50 3,49 3,48 3,46 3,43 3,40 3,39 3,38 3,38 3,38	24,5 24,2 23,8 23,5 23,3 23,6 24,2 25,3 27,1 28,5 29,3 29,9 30,1 30,0	3,82 3,83 3,84 3,84 3,85 3,85 3,84 3,83 3,71 3,77 3,74 3,73 3,71 3,71	24,5 24,2 23,8 23,6 23,4 23,7 24,3 25,5 27,5 28,8 29,2 29,8 29,9 29,8	3,82 3,83 3,84 3,84 3,85 3,85 3,84 3,83 3,71 3,76 3,74 3,73 3,71 3,71	24,4 24,1 23,7 23,4 23,2 23,5 24,1 25,2 27,3 29,0 29,7 30,1 30,3 30,2	1,91 1,92 1,92 1,92 1,92 1,92 1,92 1,91 1,90 1,88 1,88 1,87 1,88	24,4 24,1 23,8 23,5 23,3 23,3 23,6 24,2 25,4 27,4 28,8 29,4 29,8 29,9 29,7	3,48 3,49 3,49 3,50 3,50 3,50 3,48 3,46 3,43 3,40 3,39 3,38 3,38 3,38	24,5 24,2 23,9 23,6 23,4 23,7 24,3 25,5 27,4 28,7 29,8 29,9 29,7	3,48 3,48 3,49 3,50 3,50 3,50 3,49 3,48 3,46 3,43 3,40 3,39 3,38 3,38 3,38	24,3 24,0 23,6 23,4 23,2 23,2 23,5 24,2 25,5 27,7 29,0 29,4 29,8 30,0 29,7	3,83 3,84 3,84 3,85 3,85 3,85 3,85 3,85 3,85 3,76 3,76 3,77 3,71 3,71 3,71	24,4 24,1 23,7 23,5 23,3 23,3 23,6 24,2 25,5 27,6 28,9 29,3 29,8 29,9 29,7	3,83 3,83 3,84 3,85 3,85 3,85 3,85 3,84 3,83 3,76 3,73 3,71 3,71 3,71 3,72	24,8 24,5 24,1 23,9 23,7 23,7 23,9 24,5 25,4 26,8 27,8 28,5 29,2 29,4 29,4	5,44 5,46 5,47 5,48 5,49 5,48 5,46 5,43 5,38 5,38 5,31 5,28 5,27 5,27	24,9 24,5 24,2 23,9 23,7 24,0 24,5 25,4 26,5 27,4 28,0 28,9 29,0	5,44 5,46 5,47 5,48 5,49 5,48 5,46 5,43 5,38 5,35 5,33 5,35 5,30 5,29 5,29
00h30 01h30 02h30 03h30 04h30 05h30 06h30 07h30 08h30 10h30 11h30 12h30 13h30 14h30 15h30 17h30	21,9 21,6 21,3 21,2 21,5 22,3 23,5 24,6 25,5 26,9 27,3 27,5 27,5 26,9 26,9 26,9 27,5 24,7	24,6 24,3 23,9 23,7 23,5 23,5 23,5 27,3 25,5 27,3 28,6 29,2 29,7 29,9 29,8 29,3 28,6 28,1 27,4	3,47 3,48 3,49 3,49 3,50 3,50 3,49 3,48 3,46 3,43 3,40 3,39 3,38 3,38 3,38 3,38 3,41 3,41	24,5 24,2 23,8 23,5 23,3 23,6 24,2 25,3 27,1 28,5 29,9 30,1 30,0 29,5 28,8 28,3 27,6	3,82 3,83 3,84 3,85 3,85 3,84 3,87 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,7	24,5 24,2 23,8 23,6 23,4 23,7 24,3 25,5 27,5 28,8 29,2 29,8 29,9 29,8 29,3 28,6 6 23,4 23,7 24,3 25,5 27,5 28,8 29,2 29,8 29,9 29,8 29,3 28,6 28,0 28,0 28,0 28,0 28,0 28,0 28,0 28,0	3,82 3,83 3,84 3,84 3,85 3,85 3,85 3,81 3,76 3,74 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71	24,4 24,1 23,7 23,4 23,2 23,2 23,5 24,1 25,2 27,3 29,0 30,1 30,3 30,2 29,6 28,9 28,3 27,6	1,91 1,92 1,92 1,92 1,92 1,92 1,92 1,91 1,90 1,88 1,88 1,88 1,88 1,88 1,88 1,88 1,8	24,4 24,1 23,8 23,5 23,3 23,6 24,2 25,4 27,4 28,8 29,4 29,8 29,9 29,7 29,2 28,5 27,8 27,1	3,48 3,49 3,49 3,49 3,50 3,50 3,49 3,48 3,40 3,33 3,38 3,38 3,38 3,38 3,38 3,38 3,3	24,5 24,2 23,9 23,6 23,4 23,7 24,3 25,5 27,4 28,7 29,8 29,9 29,7 29,2 28,5 27,9 27,2	3,48 3,49 3,50 3,50 3,50 3,49 3,46 3,43 3,46 3,39 3,38 3,38 3,38 3,38 3,39 3,40 3,41 3,43	24,3 24,0 23,6 23,2 23,2 23,2 23,5 24,2 25,5 27,7 29,0 29,4 29,8 30,0 29,7 29,1 29,1 228,4 27,7 27,7	3,83 3,84 3,84 3,85 3,85 3,85 3,85 3,83 3,81 3,76 3,73 3,71 3,71 3,71 3,71 3,73 3,74 3,73 3,74 3,75 3,77	24,4 24,1 23,7 23,5 23,3 23,3 23,6 24,2 25,5 27,6 28,9 29,3 29,8 29,9 29,7 29,2 28,5 27,8 27,1	3,83 3,83 3,84 3,85 3,85 3,85 3,84 3,83 3,76 3,71 3,71 3,71 3,72 3,73 3,74 3,75 3,77	24,8 24,5 24,1 23,9 23,7 23,7 23,9 24,5 25,4 26,8 27,8 29,2 29,4 29,1 28,5 28,0 27,4	5,44 5,46 5,47 5,48 5,49 5,48 5,46 5,43 5,33 5,33 5,28 5,27 5,27 5,27 5,28 5,33 5,31 5,34	24,9 24,5 24,2 23,9 23,7 24,0 24,5 25,4 26,5 27,4 28,6 28,9 29,0 28,6 28,2 27,8 27,2	5,44 5,46 5,47 5,48 5,49 5,48 5,46 5,43 5,38 5,35 5,33 5,30 5,29 5,29 5,31 5,31 5,32 5,34
00h30 01h30 02h30 03h30 04h30 05h30 06h30 07h30 08h30 10h30 11h30 12h30 14h30 15h30 16h30 17h30 18h30	21,9 21,6 21,3 21,2 21,5 22,3 23,5 24,6 25,5 26,2 27,3 27,5 27,5 26,9 26,9 27,3 27,5 27,5 26,9 26,9 27,3	24,6 24,3 23,9 23,7 23,5 23,5 23,5 27,3 28,6 29,2 29,7 29,9 29,8 29,3 28,6 28,1 27,4 26,7	3,47 3,48 3,49 3,50 3,50 3,49 3,48 3,46 3,43 3,49 3,38 3,38 3,38 3,38 3,38 3,38 3,38 3,3	24,5 24,2 23,8 23,5 23,3 23,6 23,6 24,2 25,3 27,1 28,5 29,9 30,1 30,0 29,5 28,8 28,3 27,6 26,8	3,82 3,83 3,84 3,84 3,85 3,87 3,81 3,77 3,74 3,73 3,71 3,71 3,71 3,72 3,73 3,73 3,74 3,73 3,71 3,71 3,73 3,73 3,73 3,74 3,73 3,73 3,73 3,73	24,5 24,2 23,8 23,6 23,4 23,4 23,7 24,3 25,5 27,5 28,8 29,2 29,8 29,9 29,8 29,9 29,8 29,3 28,6 27,3 26,6	3,82 3,83 3,84 3,85 3,85 3,85 3,81 3,76 3,74 3,71 3,71 3,71 3,71 3,71 3,72 3,74 3,73 3,74 3,75 3,76 3,76 3,76 3,77 3,71 3,71 3,71 3,71 3,71 3,71 3,71	24,4 24,1 23,7 23,4 23,2 23,2 23,5 24,1 25,2 27,3 29,0 29,7 30,1 30,3 30,2 29,6 28,9 28,3 27,6 26,8	1,91 1,92 1,92 1,92 1,92 1,92 1,92 1,92	24,4 24,1 23,8 23,5 23,3 23,3 23,6 24,2 25,4 27,4 28,8 29,9 29,7 29,7 29,7 29,2 28,5 27,8 27,1 26,5	3,48 3,49 3,49 3,50 3,50 3,50 3,49 3,46 3,43 3,40 3,38 3,38 3,38 3,38 3,38 3,38 3,38 3,3	24,5 24,2 23,9 23,6 23,4 23,7 24,3 25,5 27,4 29,3 29,8 29,9 29,7 29,2 29,2 29,2 29,5 29,7 29,2 29,5 29,5	3,48 3,49 3,50 3,50 3,50 3,49 3,48 3,46 3,43 3,40 3,38 3,38 3,38 3,38 3,39 3,40 3,40 3,41 3,43	24,3 24,0 23,6 23,2 23,2 23,2 23,2 24,2 25,5 27,7 29,0 29,4 29,8 30,0 29,7 29,1 28,4 27,7 27,1 26,4	3,83 3,84 3,84 3,85 3,85 3,85 3,85 3,83 3,76 3,73 3,71 3,71 3,71 3,72 3,73 3,74 3,75 3,77 3,77	24,4 24,1 23,7 23,5 23,3 23,3 23,3 23,6 24,2 25,5 27,6 29,3 29,8 29,9 29,7 29,2 28,5 28,9 29,7 29,2 28,5 27,1 26,4	3,83 3,83 3,84 3,85 3,85 3,85 3,84 3,83 3,81 3,76 3,73 3,71 3,72 3,73 3,71 3,73 3,73 3,73 3,73 3,73 3,73	24,8 24,5 24,1 23,9 23,7 23,7 24,5 25,4 26,8 27,8 29,2 29,4 29,1 28,5 28,0 27,4 28,0 27,4 28,0 28,0 28,0 28,0 29,0 29,0 29,0 29,0 29,0 29,0 29,0 29	5,44 5,46 5,47 5,48 5,49 5,49 5,43 5,38 5,33 5,31 5,22 5,27 5,28 5,30 5,31 5,31 5,31 5,31 5,31 5,31 5,31 5,31	24,9 24,5 24,2 23,9 23,7 24,0 24,5 25,4 26,5 27,4 28,6 28,9 29,0 28,6 28,9 27,8 27,2 27,8 27,2	5,44 5,46 5,47 5,48 5,49 5,49 5,48 5,46 5,43 5,38 5,35 5,33 5,30 5,29 5,29 5,30 5,31 5,32 5,32 5,33 5,33 5,33 5,30 5,29 5,29 5,39 5,39 5,39 5,39 5,39 5,39 5,39 5,3
00h30 01h30 02h30 03h30 04h30 05h30 06h30 07h30 08h30 10h30 11h30 12h30 13h30 14h30 15h30 17h30	21,9 21,6 21,3 21,2 21,5 22,3 23,5 24,6 25,5 26,9 27,3 27,5 27,5 26,9 26,9 26,9 27,5 24,7	24,6 24,3 23,9 23,7 23,5 23,5 23,5 27,3 25,5 27,3 28,6 29,2 29,7 29,9 29,8 29,3 28,6 28,1 27,4	3,47 3,48 3,49 3,49 3,50 3,50 3,49 3,48 3,46 3,43 3,40 3,39 3,38 3,38 3,38 3,38 3,41 3,41	24,5 24,2 23,8 23,5 23,3 23,6 24,2 25,3 27,1 28,5 29,9 30,1 30,0 29,5 28,8 28,3 27,6	3,82 3,83 3,84 3,85 3,85 3,84 3,87 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,7	24,5 24,2 23,8 23,6 23,4 23,7 24,3 25,5 27,5 28,8 29,2 29,8 29,9 29,8 29,3 28,6 6 23,4 23,7 24,3 25,5 27,5 28,8 29,2 29,8 29,9 29,8 29,3 28,6 28,0 28,0 28,0 28,0 28,0 28,0 28,0 28,0	3,82 3,83 3,84 3,84 3,85 3,85 3,85 3,81 3,76 3,74 3,71 3,71 3,71 3,71 3,71 3,71 3,71 3,71	24,4 24,1 23,7 23,4 23,2 23,2 23,5 24,1 25,2 27,3 29,0 30,1 30,3 30,2 29,6 28,9 28,3 27,6	1,91 1,92 1,92 1,92 1,92 1,92 1,92 1,91 1,90 1,88 1,88 1,88 1,88 1,88 1,88 1,88 1,8	24,4 24,1 23,8 23,5 23,3 23,6 24,2 25,4 27,4 28,8 29,4 29,8 29,9 29,7 29,2 28,5 27,8 27,1	3,48 3,49 3,49 3,49 3,50 3,50 3,49 3,48 3,40 3,33 3,38 3,38 3,38 3,38 3,38 3,38 3,3	24,5 24,2 23,9 23,6 23,4 23,7 24,3 25,5 27,4 28,7 29,8 29,9 29,7 29,2 28,5 27,9 27,2	3,48 3,49 3,50 3,50 3,50 3,49 3,46 3,43 3,46 3,39 3,38 3,38 3,38 3,38 3,39 3,40 3,41 3,43	24,3 24,0 23,6 23,2 23,2 23,2 23,5 24,2 25,5 27,7 29,0 29,4 29,8 30,0 29,7 29,1 29,1 228,4 27,7 27,7	3,83 3,84 3,84 3,85 3,85 3,85 3,85 3,83 3,81 3,76 3,73 3,71 3,71 3,71 3,71 3,73 3,74 3,73 3,74 3,75 3,77	24,4 24,1 23,7 23,5 23,3 23,3 23,6 24,2 25,5 27,6 28,9 29,3 29,8 29,9 29,7 29,2 28,5 27,8 27,1	3,83 3,83 3,84 3,85 3,85 3,85 3,84 3,83 3,76 3,71 3,71 3,71 3,72 3,73 3,74 3,75 3,77	24,8 24,5 24,1 23,9 23,7 23,7 23,9 24,5 25,4 26,8 27,8 29,2 29,4 29,1 28,5 28,0 27,4	5,44 5,46 5,47 5,48 5,49 5,48 5,46 5,43 5,33 5,33 5,28 5,27 5,27 5,27 5,28 5,33 5,31 5,34	24,9 24,5 24,2 23,9 23,7 24,0 24,5 25,4 26,5 27,4 28,6 28,9 29,0 28,6 28,2 27,8 27,2	5,44 5,46 5,47 5,48 5,49 5,48 5,46 5,43 5,38 5,35 5,33 5,30 5,29 5,29 5,31 5,31 5,32 5,34
00h30 01h30 02h30 03h30 04h30 05h30 06h30 07h30 09h30 10h30 11h30 12h30 13h30 14h30 15h30 16h30 17h30 18h30 19h30	21,9 21,6 21,3 21,2 21,5 22,3 23,5 24,6 25,5 26,2 27,5 27,5 26,9 27,5 26,9 27,5 24,7 23,9 23,2	24,6 24,3 23,9 23,7 23,5 23,5 23,8 24,3 25,5 27,3 28,6 29,2 29,7 29,9 29,8 29,3 28,6 28,1 26,7 27,4 26,7 26,7	3,47 3,48 3,49 3,50 3,50 3,49 3,48 3,48 3,48 3,48 3,38 3,38 3,38 3,38	24,5 24,2 23,8 23,3 23,3 23,3 23,6 24,2 25,3 27,1 28,5 29,9 30,1 30,0 29,5 28,8 28,3 27,6 26,8 26,1	3,82 3,83 3,84 3,85 3,85 3,84 3,83 3,77 3,74 3,73 3,71 3,71 3,72 3,73 3,74 3,73 3,71 3,71 3,72 3,73 3,74 3,73	24,5 24,2 23,8 23,6 23,4 23,7 24,3 25,5 27,5 28,8 29,2 29,8 29,9 29,8 28,6 28,0 26,6 26,0	3,82 3,83 3,84 3,84 3,85 3,85 3,81 3,76 3,71 3,71 3,71 3,71 3,72 3,74 3,73 3,71 3,71 3,72 3,74 3,73 3,71 3,71 3,71 3,72 3,74 3,73 3,74 3,73 3,74 3,73 3,74 3,74	24,4 24,1 23,7 23,4 23,2 23,5 24,1 25,2 27,3 29,0 29,7 30,1 30,3 30,2 29,6 28,9 28,9 27,6 26,8 26,1	1,91 1,92 1,92 1,92 1,92 1,92 1,92 1,92	24,4 24,1 23,8 23,5 23,3 23,6 24,2 25,4 29,4 29,8 29,9 29,7 29,2 28,5 27,8 27,8 27,8 27,8	3,48 3,49 3,50 3,50 3,50 3,49 3,48 3,46 3,43 3,39 3,38 3,38 3,38 3,38 3,38 3,38 3,3	24,5 24,2 23,9 23,6 23,4 23,4 23,7 24,3 29,8 29,7 29,3 29,9 29,7 29,2 28,5 27,9 27,2 26,5 25,5 27,2	3,48 3,49 3,50 3,50 3,50 3,49 3,48 3,46 3,43 3,40 3,38 3,38 3,38 3,38 3,40 3,41 3,41 3,41 3,43	24,3 24,0 23,6 23,2 23,2 23,2 23,5 24,2 25,5 27,7 29,0 29,4 29,8 29,7 29,1 28,4 27,7 27,1 26,4 25,5	3,83 3,84 3,84 3,85 3,85 3,85 3,85 3,83 3,76 3,73 3,72 3,71 3,72 3,71 3,72 3,73 3,74 3,75 3,77 3,78	24,4 24,1 23,7 23,5 23,3 23,3 23,3 24,2 25,5 27,6 28,9 29,3 29,7 29,2 28,8 29,9 29,7 29,2 27,1 26,4 25,8	3,83 3,83 3,84 3,85 3,85 3,85 3,85 3,87 3,73 3,72 3,71 3,71 3,72 3,73 3,72 3,73 3,72 3,73 3,72 3,73 3,73	24,8 24,5 24,1 23,9 23,7 23,7 23,9 24,5 25,4 26,8 27,8 29,2 29,4 29,1 28,5 28,0 28,0 28,0 29,4 29,4 29,1 20,1 20,7 20,7 20,7 20,7 20,7 20,7 20,7 20,7	5,44 5,46 5,47 5,48 5,49 5,48 5,46 5,43 5,33 5,31 5,27 5,27 5,28 5,30 5,31 5,34 5,36 5,33	24,9 24,5 24,2 23,9 23,7 24,0 24,5 25,4 26,5 27,4 28,6 28,9 29,0 28,6 28,2 27,2 26,6 26,1	5,44 5,46 5,47 5,49 5,49 5,48 5,46 5,33 5,38 5,33 5,30 5,29 5,29 5,30 5,31 5,32 5,34 5,34 5,35 5,39

Tabela B.3. TR (s) - Edifício II - sse4 - 5 ren/h; Sabine, Millington, Eyring e Arau-Puchades (1000 Hz)

(continua)

Color Colo																						contii	iua)
C C C C C C C C C C C C C									S	abin	e								Mi	lling	ton		
O11500 21,6 84,0 3,49 3,84 5,43 1,91 5,45 3,84 3,83 3,48 3,83 3,48 3,40 3,76 5,34 1,79 5,37 3,75 3,39 02h30 21,2 87,0 3,50 3,86 5,45 1,92 5,47 3,85 3,84 3,49 3,84 3,49 3,84 3,49 3,84 3,49 3,84 3,49 3,84 3,49 3,84 3,49 3,84 3,49 3,84 3,49 3,84 3,49 3,85 5,48 3,60 5,39 3,76 3,40 04h30 21,2 86,5 3,50 3,85 5,46 1,92 5,48 3,85 3,50 3,85 3,50 3,85 3,50 3,85 3,50 3,85 3,40 3,84 3,48 3,83 3,48 3,48 3,81 3,44 3,44 3,44 3,44 3,44 3,44 3,44 3,45 3,44 3,45 3,44 3	Tempo (h)	Temperatura externa (°C)		PLC(10)-LVI(50)-ar(25)-PLC(10)	GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	PMC(75)-LVI(50)-ar(25)-PMC(75)	CCA(100)-LVI(50)-ar(25)-CCA(100)	EPS(100)-LVI(50)-ar(25)-EPS(100)	PLC(10)-LVI(50)-ar(25)-GEA(12,5)	PMC(75)-LVI(50)-ar(25)-PLC(10)	PMC(75)-LVI(50)-ar(25)-GEA(12,5)	CCA(100)-LVI(50)-ar(25)-PLC(10)	CCA(100)-LVI(50)-ar(25)-GEA(12,5)	EPS(100)-LVI(50)-ar(25)-PLC(10)	EPS(100)-LVI(50)-ar(25)-GEA(12,5)	ATC(150)	PLC(10)-LVI(50)-ar(25)-PLC(10)	GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)				PLC(10)-LVI(50)-ar(25)-GEA(12,5)	PMC(75)-LVI(50)-ar(25)-PLC(10)
02h30 21,3 87,0 3,49 3,84 5,44 1,92 5,46 3,84 3,49 3,84 3,49 3,84 3,49 3,84 3,49 3,84 3,49 3,84 3,49 3,84 3,49 3,85 5,48 3,41 3,76 5,36 1,80 5,39 3,76 3,40 04h30 21,2 86,5 3,50 3,85 5,45 1,92 5,48 3,85 3,50 3,85 5,48 3,41 3,77 5,37 1,80 5,39 3,77 3,41 05h30 21,5 84,5 3,50 3,85 5,46 1,92 5,48 3,85 3,50 3,85 5,49 3,41 3,77 5,37 1,80 5,40 3,77 3,41 06h30 22,3 80,0 3,50 3,85 3,40 3,84 3,43 3,48 3,83 3,48 3,83 3,48 3,83 3,48 3,83 3,48 3,83 3,48 3,83 3,48							1,91														5,35		
03h30 21,2 87,0 3,50 3,85 5,45 1,92 5,47 3,85 3,49 3,84 3,49 3,85 5,48 3,41 3,76 5,36 1,80 5,39 3,76 3,40 04h30 21,2 86,5 3,50 3,85 5,45 1,92 5,48 3,85 3,50 3,85 3,50 3,85 3,50 3,85 3,50 3,85 3,50 3,85 3,50 3,85 3,50 3,85 3,49 3,84 3,49 3,84 3,49 3,84 3,40 3,77 3,41 3,76 5,37 1,80 5,40 3,77 3,41 06h30 23,5 74,0 3,49 3,84 5,43 1,91 5,46 3,83 3,48 3,83 3,48 3,83 3,48 3,43 3,48 3,83 3,48 3,83 3,48 3,83 3,48 3,83 3,48 3,83 3,48 3,83 3,48 3,84 3,83 3,78 3,																							
04h30 21,2 86,5 3,50 3,85 5,45 1,92 5,48 3,85 3,49 3,85 3,50 3,85 5,49 3,41 3,77 5,37 1,80 5,39 3,77 3,41 05h30 21,5 84,5 3,50 3,85 5,46 1,92 5,48 3,50 3,85 3,50 3,85 3,49 3,41 3,77 5,37 1,80 5,40 3,77 3,41 06h30 22,3 80,0 3,50 3,85 5,46 1,92 5,48 3,85 3,49 3,84 3,49 3,84 3,49 3,84 3,84 3,43 3,76 3,66 3,40 3,75 5,36 1,80 5,39 3,77 3,76 3,40 3,81 3,46 3,81 3,46 3,81 3,46 3,81 3,46 3,81 3,46 3,81 3,46 3,81 5,48 3,43 3,76 5,31 1,79 5,33 3,73 3,73 3,38 1,																							
05h30 21,5 84,5 3,50 3,85 5,46 1,92 5,49 3,85 3,50 3,85 3,50 3,85 3,50 3,85 5,49 3,41 3,77 5,37 1,80 5,40 3,77 3,41 06h30 22,3 80,0 3,50 3,85 5,45 1,92 5,48 3,85 3,49 3,84 3,49 3,84 3,49 3,84 3,49 3,84 3,49 3,84 3,49 3,84 3,49 3,84 3,49 3,84 3,49 3,84 3,49 3,84 3,49 3,84 3,48 3,41 3,70 5,36 1,80 5,39 3,75 3,75 3,75 3,75 3,75 3,75 3,34 3,66 3,81 5,46 3,40 3,75 5,31 1,79 5,33 3,78 3,38 3,48 3,48 3,48 3,83 3,48 3,48 3,43 3,66 5,34 3,71 5,39 1,88 5,37 3,76																							
06h30 22,3 80,0 3,50 3,85 5,45 1,92 5,48 3,84 3,49 3,84 3,49 3,84 5,48 3,41 3,76 5,36 1,80 5,39 3,76 3,40 07h30 23,5 74,0 3,49 3,84 3,83 3,48 3,83 3,48 3,83 3,48 3,83 3,48 3,83 3,48 3,83 3,48 3,83 3,48 3,83 3,48 3,83 3,48 3,83 3,48 3,83 3,48 3,83 3,48 3,83 3,48 3,83 3,48 3,83 3,48 3,83 3,48 3,83 3,48 3,48 3,83 3,48 3,49 3,48 3,76 5,38																							
07h30 23,5 74,0 3,49 3,84 5,43 1,91 5,46 3,83 3,48 3,83 3,48 3,83 5,46 3,40 3,75 5,34 1,79 5,37 3,75 3,39 08h30 24,6 68,5 3,47 3,81 5,40 1,91 5,42 3,81 3,46 3,81 3,46 3,81 3,46 3,81 3,46 3,81 3,46 3,81 3,46 3,81 3,46 3,81 3,46 3,81 3,46 3,81 3,43 3,76 5,33 3,72 5,33 1,79 5,33 3,73 3,38 10h30 26,2 62,0 3,39 3,72 5,32 1,88 5,31 3,71 3,39 3,73 3,39 3,72 5,33 3,66 5,25 1,77 5,22 3,68 3,34 11h30 26,9 59,5 3,38 3,71 5,30 1,88 5,27 3,71 3,38 3,71 3,38 3,71																							
08h30 24,6 68,5 3,47 3,81 5,40 1,91 5,42 3,81 3,46 3,81 3,46 3,81 3,46 3,81 3,46 3,81 5,40 3,33 3,33 3,33 3,33 3,33 3,34 3,76 5,36 1,89 5,37 3,76 3,43 3,76 3,43 3,76 5,38 3,34 3,68 5,27 1,78 5,29 3,68 3,34 10h30 26,2 62,0 3,39 3,72 5,33 1,89 5,33 1,72 3,40 3,74 3,40																							
09h30 25,5 64,5 3,43 3,76 5,36 1,89 5,37 3,76 3,43 3,76 3,43 3,76 3,43 3,76 5,38 3,34 3,68 5,27 1,78 5,29 3,68 3,34 10h30 26,2 62,0 3,39 3,72 5,33 1,89 5,33 3,72 3,40 3,74 3,40 3,74 3,40 3,74 3,40 3,73 3,39 3,30 3,64 5,25 1,77 5,25 3,64 3,32 11h30 26,9 59,5 3,38 3,71 5,30 1,88 5,28 3,71 3,38 3,71 3,30 3,64 5,23 1,76 5,02 3,63 3,31 3,39 3,73 3,39 3,72 5,33 3,30 3,64 5,23 1,77 5,22 3,63 3,31 12h30 27,5 58,0 3,38 3,71 5,29 1,88 5,27 3,70 3,38 3,71 3,38	07h30	23,5	74,0	3,49	3,84	5,43	1,91	5,46	3,83	3,48	3,83	3,48	3,83	3,48	3,83	5,46	3,40	3,75	5,34	1,79	5,37	3,75	3,39
10h30 26,2 62,0 3,39 3,72 5,33 1,89 5,33 3,72 3,40 3,74 3,40 3,74 3,40 3,73 5,35 3,31 3,64 5,25 1,77 5,25 3,64 3,32 11h30 26,9 59,5 3,38 3,72 5,32 1,88 5,31 3,71 3,39 3,73 3,39 3,72 5,33 3,30 3,64 5,23 1,77 5,22 3,63 3,31 12h30 27,3 58,5 3,38 3,71 5,39 1,88 5,28 3,71 3,38 3,71 3,38 3,71 5,39 3,63 5,20 1,68 5,28 3,71 3,38 3,71 5,38 3,71 5,29 1,88 5,27 3,70 3,38 3,71 3,38 3,71 5,29 3,63 5,20 1,76 5,19 3,63 3,21 1,76 5,19 3,63 3,21 1,76 5,19 3,63 3,21 1,				3,47							3,81												
11h30 26,9 59,5 3,38 3,72 5,32 1,88 5,31 3,71 3,39 3,73 3,39 3,72 5,33 3,00 3,64 5,23 1,77 5,22 3,63 3,31 12h30 27,3 58,5 3,38 3,71 5,30 1,88 5,28 3,71 3,38 3,71 3,38 3,71 5,50 3,63 5,21 1,76 5,20 3,63 3,30 14h30 27,5 58,0 3,38 3,71 5,29 1,88 5,27 3,71 3,38 3,71 3,38 3,71 5,20 3,63 5,21 1,76 5,20 3,63 5,21 1,76 5,19 3,62 3,30 14h30 27,5 57,5 3,38 3,71 5,28 3,72 3,71 3,38 3,71 3,38 3,72 5,29 3,63 5,21 1,76 5,19 3,62 3,30 15h30 26,9 60,5 3,39 3,72 </td <td>09h30</td> <td>25,5</td> <td>64,5</td> <td>3,43</td> <td></td> <td>5,36</td> <td>1,89</td> <td>5,37</td> <td>3,76</td> <td>3,43</td> <td>3,76</td> <td></td> <td>3,76</td> <td>3,43</td> <td>3,76</td> <td>5,38</td> <td>3,34</td> <td>3,68</td> <td>5,27</td> <td>1,78</td> <td>5,29</td> <td>3,68</td> <td></td>	09h30	25,5	64,5	3,43		5,36	1,89	5,37	3,76	3,43	3,76		3,76	3,43	3,76	5,38	3,34	3,68	5,27	1,78	5,29	3,68	
12h30 27,3 58,5 3,38 3,71 5,30 1,88 5,28 3,71 3,38 3,71 3,38 3,71 5,30 1,88 5,28 3,71 3,38 3,71 5,30 3,30 3,63 5,21 1,76 5,20 3,63 3,30 13h30 27,5 57,5 58,0 3,38 3,71 5,29 1,88 5,27 3,70 3,38 3,71 3,38 3,71 5,29 3,30 3,63 5,20 1,76 5,19 3,62 3,30 14h30 27,5 57,5 3,38 3,71 5,29 1,88 5,27 3,71 3,38 3,71 3,38 3,71 3,38 3,71 3,38 3,71 3,38 3,71 3,38 3,71 3,38 3,71 3,38 3,71 3,38 3,71 3,38 3,71 3,38 3,71 3,38 3,71 3,38 3,71 3,38 3,72 3,39 3,72 3,39 3,72 3,	10h30	26,2	62,0	3,39	3,72	5,33	1,89	5,33	3,72	3,40	3,74	3,40	3,74	3,40	3,73	5,35	3,31	3,64	5,25	1,77	5,25	3,64	3,32
13h30 27,5 58,0 3,38 3,71 5,29 1,88 5,27 3,70 3,38 3,71 3,38 3,71 5,29 3,20 1,76 5,19 3,62 3,30 14h30 27,5 57,5 3,38 3,71 5,29 1,88 5,27 3,71 3,38 3,71 3,38 3,71 5,29 3,30 3,63 5,21 1,76 5,19 3,63 3,30 15h30 26,9 60,5 3,39 3,72 5,30 1,88 5,28 3,72 3,39 3,72 3,99 3,73 5,30 1,64 5,22 1,77 5,20 3,64 3,21 16h30 26,1 64,5 3,40 3,74 3,40 3,74 3,40 3,74 3,40 3,74 3,40 3,74 3,40 3,74 3,40 3,74 3,40 3,74 3,40 3,74 3,40 3,74 3,40 3,74 5,31 3,32 3,65 5,22 1,77	11h30	26,9	59,5	3,38	3,72	5,32	1,88	5,31	3,71	3,39	3,73	3,39	3,73	3,39	3,72	5,33	3,30	3,64	5,23	1,77	5,22	3,63	3,31
14h30 27,5 57,5 3,38 3,71 5,29 1,88 5,27 3,71 3,38 3,71 3,38 3,71 3,38 3,71 3,38 3,71 3,38 3,71 3,38 3,72 5,29 3,30 3,63 5,21 1,76 5,19 3,63 3,30 15h30 26,9 60,5 3,39 3,72 5,39 1,88 5,28 3,72 3,99 3,72 3,99 3,73 5,30 3,31 3,64 5,22 1,77 5,20 3,64 3,21 16h30 26,1 64,5 3,40 3,74 5,34 3,40 3,74 3,40 3,74 3,40 3,74 3,40 3,74 5,31 3,32 3,66 5,23 1,77 5,22 3,65 3,22 17h30 24,7 71,5 3,42 3,75 5,341 3,75 3,41 3,75 5,32 3,38 3,67 5,24 1,77 5,22 3,65 3,22 3,3	12h30	27,3	58,5	3,38	3,71	5,30	1,88	5,28	3,71	3,38	3,71	3,38	3,71	3,38	3,71	5,30	3,30	3,63	5,21	1,76	5,20	3,63	3,30
14h30 27,5 57,5 3,38 3,71 5,29 1,88 5,27 3,71 3,38 3,71 3,38 3,71 5,29 1,88 5,27 3,71 3,38 3,71 3,38 3,72 5,29 3,30 3,63 5,21 1,76 5,19 3,63 3,30 15h30 26,9 60,5 3,39 3,72 5,30 1,88 5,28 3,72 3,93 3,72 3,93 3,73 5,30 3,31 3,64 3,22 1,77 5,20 3,64 3,21 16h30 26,1 64,5 3,40 3,74 5,34 3,40 3,74 3,40 3,74 3,40 3,74 3,40 3,74 3,40 3,74 3,40 3,74 3,40 3,74 3,40 3,74 3,40 3,74 3,40 3,74 3,40 3,74 3,40 3,74 3,40 3,74 3,40 3,74 3,40 3,74 3,40 3,74 3,40 3,75 3,																				1,76			
15h30 26,9 60,5 3,39 3,72 5,30 1,88 5,28 3,72 3,39 3,72 3,39 3,72 3,39 3,72 3,39 3,72 3,39 3,72 3,30 3,31 3,64 5,22 1,77 5,20 3,64 3,31 16h30 26,1 64,5 3,40 3,74 5,40 3,74 3,40 3,74 3,40 3,74 3,40 3,74 3,40 3,74 3,40 3,74 3,40 3,74 3,41 3,75 5,31 3,32 3,66 5,23 1,77 5,22 3,65 3,22 17h30 25,5 68,0 3,41 3,75 5,34 3,75 3,41 3,75 3,41 3,75 3,41 3,75 3,41 3,75 3,41 3,75 3,41 3,75 3,41 3,75 3,41 3,76 3,42 3,76 3,42 3,76 3,42 3,76 3,42 3,76 3,42 3,76 3,42 3,	14h30	27,5	57,5	3,38	3,71	5,29	1,88	5,27	3,71	3,38	3,71	3,38	3,71		3,72	5,29	3,30	3,63		1,76	5,19	3,63	3,30
17h30 25,5 68,0 3,41 3,75 5,33 1,89 5,32 3,75 3,41 3,75 3,41 3,75 5,34 3,75 5,24 1,77 5,23 3,67 3,33 18h30 24,7 71,5 3,42 3,77 5,34 1,89 5,34 3,76 3,42 3,76 3,43 3,77 5,34 3,88 5,26 1,78 5,25 3,88 3,44 19h30 23,9 75,0 3,44 3,78 5,36 1,90 5,38 3,78 3,45 3,78 3,44 3,78 3,37 5,32 3,71 5,28 1,78 5,25 3,88 3,45 3,79 3,45 3,78 3,44 3,78 3,43 3,78 3,44 3,78 3,45 3,79 3,45 3,79 3,45 3,79 3,45 3,79 3,45 3,79 3,45 3,79 3,45 3,79 3,45 3,79 3,46 3,81 5,41 1,179 5	15h30				3,72	5,30		5,28	3,72	3,39			3,72		3,73		3,31	3,64	5,22	1,77		3,64	
17h30 25,5 68,0 3,41 3,75 5,33 1,89 5,32 3,75 3,41 3,75 3,41 3,75 5,34 3,75 5,32 3,75 5,24 1,77 5,23 3,67 3,34 18h30 24,7 71,5 3,42 3,77 5,34 1,89 5,34 3,76 3,42 3,76 3,43 3,76 3,43 3,78 3,43 3,77 5,34 3,88 5,26 1,78 5,25 3,68 3,24 19h30 23,9 75,0 3,44 3,78 5,36 1,90 5,38 3,78 3,45 3,78 3,44 3,78 3,43 3,78 3,44 3,78 3,45 3,79 3,45 3,79 3,45 3,79 3,45 3,79 3,45 3,79 3,45 3,79 3,45 3,79 3,45 3,79 3,45 3,79 3,45 3,79 3,45 3,81 3,49 3,81 5,41 1,79 5,23 3,					3,74			5,30					3,74		3,74	5,31		3,66		1,77		3,65	
18h30 24,7 71,5 3,42 3,77 5,34 1,89 5,34 3,42 3,76 3,42 3,76 3,42 3,76 3,42 3,76 3,43 3,78 3,43 3,88 5,26 1,78 5,25 3,68 3,34 19h30 23,9 75,0 3,44 3,78 5,36 1,90 5,36 3,78 3,45 3,78 3,44 3,78 3,35 3,70 5,28 1,78 5,28 3,70 3,25 20h30 22,7 80,5 3,46 3,81 5,40 5,39 3,79 3,45 3,79 3,45 3,79 3,45 3,79 3,45 3,79 3,45 3,79 3,45 3,79 3,45 3,79 3,45 3,79 3,45 3,79 3,45 3,79 3,45 3,79 3,45 3,79 3,45 3,79 3,45 3,79 3,45 3,79 3,45 3,79 3,45 3,79 3,45 3,81 5,41 3,	17h30	25,5			3,75	5,33							3,75		3,75			3,67		1,77			
19h30 23,9 75,0 3,44 3,78 5,36 1,90 5,36 3,43 3,78 3,44 3,78 5,37 3,35 3,70 5,28 1,78 5,28 3,70 3,35 20h30 23,2 78,5 3,45 3,80 5,38 1,90 5,39 3,79 3,45 3,79 3,45 3,79 5,39 3,36 3,71 5,29 1,78 5,30 3,71 3,36 21h30 22,7 80,5 3,46 3,81 5,40 1,91 5,42 3,82 3,46 3,81 3,46 3,81 3,46 3,81 3,46 3,81 3,46 3,81 3,46 3,81 3,46 3,81 3,46 3,81 3,46 3,81 3,46 3,81 3,46 3,81 3,46 3,81 3,46 3,81 3,46 3,81 3,46 3,81 3,46 3,81 3,47 3,82 5,42 3,38 3,73 5,32 3,73 3,33 3,	18h30	24,7	71,5		3,77	5,34		5,34	3,76		3,76		3,76		3,77		3,34	3,68	5,26	1,78		3,68	3,34
20h30 23,2 78,5 3,45 3,80 5,38 1,90 5,39 3,79 3,45 3,79 3,45 3,79 5,39 3,36 3,71 5,29 1,78 5,30 3,71 3,36 21h30 22,7 80,5 3,46 3,81 5,40 1,91 5,41 3,81 3,46 3,80 3,46 3,81 5,41 3,37 3,72 5,31 1,79 5,32 3,72 22h30 22,4 82,0 3,47 3,82 5,41 1,91 5,42 3,82 3,46 3,81 3,46 3,81 3,47 3,82 5,42 3,38 3,73 5,32 1,79 5,33 3,73 3,38																							
21h30 22,7 80,5 3,46 3,81 5,40 1,91 5,41 3,81 3,46 3,80 3,46 3,81 5,41 3,37 3,72 5,31 1,79 5,32 3,72 22h30 22,4 82,0 3,47 3,82 5,41 1,91 5,42 3,82 3,46 3,81 3,46 3,81 3,47 3,82 5,42 3,38 3,73 5,32 1,79 5,33 3,73 3,38					3,80	5,38		5,39	3,79				3,79		3,79	5,39			5,29	1,78			3,36
22h30 22,4 82,0 3,47 3,82 5,41 1,91 5,42 3,82 3,46 3,81 3,46 3,81 3,47 3,82 5,42 3,38 3,73 5,32 1,79 5,33 3,73 3,38		22,7											3,80							1,79			
			84,0		3,83			5,43							3,82		3,39		5,33			3,74	3,38

]	Milli	ngton	1							F	Eyring	g					
Tempo (h)	Temperatura externa (°C)	Umidade (%)	PMC(75)-LVI(50)-ar(25)-GEA(12,5)	CCA(100)-LVI(50)-ar(25)-PLC(10)	CCA(100)-LVI(50)-ar(25)-GEA(12,5)	EPS(100)-LVI(50)-ar(25)-PLC(10)	EPS(100)-LVI(50)-ar(25)-GEA(12,5)	ATC(150)	PLC(10)-LVI(50)-ar(25)-PLC(10)	GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	PMC(75)-LVI(50)-ar(25)-PMC(75)	CCA(100)-LVI(50)-ar(25)-CCA(100)	EPS(100)-LVI(50)-ar(25)-EPS(100)	PLC(10)-LVI(50)-ar(25)-GEA(12,5)	PMC(75)-LVI(50)-ar(25)-PLC(10)	PMC(75)-LVI(50)-ar(25)-GEA(12,5)	CCA(100)-LVI(50)-ar(25)-PLC(10)	CCA(100)-LVI(50)-ar(25)-GEA(12,5)	EPS(100)-LVI(50)-ar(25)-PLC(10)	EPS(100)-LVI(50)-ar(25)-GEA(12,5)	ATC(150)
00h30	21,9	83,0	3,74	3,39	3,74	3,39	3,74	5,35	3,42	3,77	5,37	1,84	5,39	3,77	3,41	3,76	3,41	3,76	3,41	3,76	5,39
01h30	21,6	84,0	3,75	3,39	3,75	3,40	3,75	5,37	3,42	3,78	5,38	1,84	5,40	3,78	3,42	3,77	3,42	3,77	3,42	3,77	5,40
02h30	21,3	87,0	3,75	3,40	3,75	3,40	3,75	5,38	3,43	3,78	5,39	1,84	5,41	3,78	3,42	3,78	3,42	3,78	3,42	3,78	5,41
03h30	21,2	87,0	3,76	3,40	3,76	3,40	3,76	5,39	3,43	3,79	5,40	1,85	5,42	3,79	3,43	3,78	3,43	3,78	3,43	3,78	5,42
04h30	21,2	86,5	3,76	3,41	3,76	3,41	3,76	5,40	3,44	3,79	5,40	1,85	5,43	3,79	3,43	3,79	3,43	3,79	3,43	3,79	5,43
05h30	21,5	84,5	3,76	3,41	3,76	3,41	3,77	5,40	3,44	3,79	5,40	1,85	5,43	3,79	3,43	3,79	3,43	3,79	3,43	3,79	5,44
06h30	22,3	80,0	3,76	3,40	3,76	3,40	3,76	5,39	3,43	3,79	5,39	1,85	5,42	3,79	3,43	3,78	3,43	3,78	3,43	3,78	5,43
07h30	23,5	74,0	3,75	3,39	3,75	3,39	3,75	5,37	3,42	3,77	5,37	1,84	5,40	3,77	3,42	3,77	3,42	3,77	3,42	3,77	5,41
08h30	24,6	68,5	3,72	3,38	3,72	3,38	3,72	5,34	3,40	3,75	5,35	1,84	5,37	3,75	3,40	3,75	3,40	3,75	3,40	3,75	5,38
09h30	25,5	64,5	3,68	3,34	3,68	3,34	3,68	5,30	3,37	3,70	5,31	1,82	5,32	3,70	3,37	3,70	3,37	3,71	3,37	3,70	5,33
10h30	26,2	62,0	3,65	3,32	3,66	3,32	3,65	5,27	3,33	3,66	5,28	1,82	5,28	3,66	3,34	3,68	3,34	3,68	3,34	3,68	5,30
11h30	26,9	59,5	3,65	3,31	3,65	3,31	3,64	5,24	3,32	3,66	5,26	1,81	5,26	3,65	3,33	3,67	3,33	3,67	3,33	3,67	5,28
12h30	27,3	58,5	3,63	3,30	3,63	3,30	3,63	5,22	3,32	3,65	5,25	1,81	5,23	3,65	3,32	3,66	3,32	3,66	3,32	3,66	5,25
13h30	27,5	58,0	3,63	3,30	3,63	3,30	3,63	5,20	3,32	3,65	5,24	1,81	5,22	3,65	3,32	3,65	3,32	3,65	3,32	3,65	5,24
14h30	27,5	57,5	3,63	3,30	3,63	3,30	3,64	5,20	3,32	3,66	5,24	1,81	5,22	3,65	3,32	3,66	3,32	3,66	3,32	3,66	5,24
15h30	26,9	60,5	3,64	3,31	3,64	3,31	3,65	5,21	3,33	3,67	5,25	1,81	5,23	3,66	3,33	3,67	3,33	3,67	3,33	3,67	5,25
16h30	26,1	64,5	3,65	3,32	3,66	3,32	3,66	5,23	3,34	3,68	5,27	1,82	5,25	3,68	3,34	3,68	3,34	3,68	3,34	3,68	5,26
17h30	25,5	68,0	3,66	3,33	3,67	3,33	3,67	5,24	3,35	3,69	5,28	1,82	5,27	3,69	3,35	3,69	3,35	3,69	3,35	3,69	5,27
18h30	24,7	71,5	3,68	3,34	3,68	3,34	3,68	5,26	3,36	3,71	5,29	1,82	5,29	3,70	3,36	3,70	3,36	3,70	3,36	3,71	5,29
19h30	23,9	75,0	3,69	3,35	3,69	3,35	3,70	5,28	3,38	3,72	5,31	1,83	5,31	3,72	3,37	3,72	3,37	3,72	3,38	3,72	5,32
20h30	23,2	78,5	3,71	3,36	3,71	3,36	3,71	5,30	3,39	3,74	5,33	1,83	5,33	3,73	3,38	3,73	3,38	3,73	3,39	3,73	5,34
21h30	22,7	80,5	3,72	3,37	3,72	3,37	3,72	5,32	3,40	3,75	5,34	1,83	5,35	3,75	3,39	3,74	3,39	3,74	3,40	3,75	5,36
22h30	22,4	82,0	3,73	3,38	3,73	3,38	3,73	5,33	3,41	3,76	5,36	1,84	5,37	3,76	3,40	3,75	3,40	3,75	3,41	3,75	5,37
23h30	22,1	84,0	3,73	3,38	3,73	3,39	3,74	5,35	3,41	3,76	5,36	1,84	5,38	3,76	3,41	3,76	3,41	3,76	3,41	3,76	5,38

Tabela B.3. TR (s) - Edifício II - sse4 - 5 ren/h; Sabine, Millington, Eyring e Arau-Puchades (1000 Hz) (conclusão)

Arau-Puchades GEA(12,5)-LVI(50)-ar(25)-GEA(12,5) CCA(100)-LVI(50)-ar(25)-GEA(12,5) EPS(100)-LVI(50)-ar(25)-GEA(12,5) CCA(100)-LVI(50)-ar(25)-CCA(100) EPS(100)-LVI(50)-ar(25)-EPS(100) PLC(10)-LVI(50)-ar(25)-GEA(12,5) PMC(75)-LVI(50)-ar(25)-GEA(12,5) CCA(100)-LVI(50)-ar(25)-PLC(10) EPS(100)-LVI(50)-ar(25)-PLC(10) PMC(75)-LVI(50)-ar(25)-PMC(75) PMC(75)-LVI(50)-ar(25)-PLC(10) PLC(10)-LVI(50)-ar(25)-PLC(10) Temperatura externa (°C) Umidade (%) Tempo (h) 5,52 5,53 4,13 3,85 3,85 3,85 00h30 21,9 83,0 3,86 4,13 2,63 4,12 4,12 4,13 5,54 21,6 84,0 3,86 21,3 87,0 3,87
 4,14
 5,53
 2,63
 5,55
 4,14

 4,14
 5,53
 2,63
 5,56
 4,14
 4,13 3,86 4,14 3,86 4,13 4,14 01h30 3,86 3,86 4,14 5,55 02h30 3,86 3,86 4,14 5,56 03h30 21,2 87,0 3,87 4,15 5,54 2,63 5,56 4,15 3,87 4,14 3,87 04h30 21,2 86,5 3,88 4,15 5,55 2,64 5,57 4,15 3,87 4,15 3,87 05h30 21,5 84,5 3,88 4,15 5,55 2,64 5,57 4,15 3,87 4,15 3,87 4,14 3,87 4,14 5,57 4,15 3,87 4,15 5,57 4,15 3,87 4,15 5,58 06h30 22,3 80,0 3,87 4,15 5,54 2,63 5,57 4,15 3,87 4,14 3,87 4,14 3,87 4,14 23,5 74,0 3,86 4,14 5,53 2,63 5,55 4,14 3,86 4,13 3,86 4,13 3,86 4,13 5,55 24,6 68,5 3,85 4,12 5,50 2,62 5,52 4,11 3,84 4,11 3,84 4,11 3,84 4,11 5,53
 25,5
 64,5
 3,81
 4,07
 5,47
 2,60
 5,48
 4,07

 26,2
 62,0
 3,78
 4,04
 5,45
 2,59
 5,45
 4,03
 3,81 4,07 3,81 4,07 3,81 4,07 10h30 3.79 4.05 3.79 4.05 3,79 4,05 5.47 26,9 59,5 3,77 4,03 5,44 2,59 5,43 4,03 3,78 4,04 3,78 11h30 4,04 27,3 58,5 3,76 4,03 5,42 2,58 5,41 4,02
 27,5
 58,0
 3,76
 4,02
 5,41
 2,58
 5,40
 4,02
 3,76
 4,02
 3,76
 4,02
 5,41
 4,02
 5,41
 4,02
 3,76
 4,02
 3,76
 4,02
 3,77
 4,03
 3,77
 4,03
 3,77
 4,03
 5,41
 2,68
 5,40
 4,02
 3,77
 4,03
 3,77
 4,03
 3,77
 4,03
 3,77
 4,03
 5,41
 2,42
 2,59
 5,41
 4,04
 3,77
 4,04
 3,77
 4,04
 3,78
 4,04
 5,42
 5,42
 4,04
 3,77
 4,04
 3,77
 4,04
 3,78
 4,04
 5,42
 5,42
 4,04
 3,77
 4,04
 3,77
 4,04
 3,78
 4,04
 5,42
 5,42
 5,42
 4,04
 3,77
 4,04
 3,77
 4,04
 3,78
 4,04
 5,42
 5,42
 3,42
 3,42
 3,42
 3,42
 3,42
 3,42
 3,42
 3,42
 3,42
 3,43
 3,42
 3,42
 3,42
 <td 13h30 14h30 15h30 26,1 64,5 3,78 4,05 5,43 2,59 5,42 4,05 3,78 4,05 3,78 4,05 3,78 4,05 25,5 68,0 3,79 4,06 5,44 2,59 5,43 4,06 17h30 3,79 4,06 3,79 4,06 3,79 4,06 5,44
 24,7
 71,5
 3,80
 4,07
 5,46
 2,60
 5,45
 4,07

 23,9
 75,0
 3,82
 4,09
 5,47
 2,61
 5,47
 4,09
 4,07 3,81 4,07 5.46 3.80 4.07 3.80 18h30 3,81 4,08 3,81 5,48 19h30 4,08 3,82 4,09 23,2 78,5 3,83 4,10 5,49 2,61 5,49 4,10 3,82 4,09 3,83 4,09 3,83 4,10 5,49 22,7 80,5 3,84 4,11 5,50 2,62 5,51 4,11 3,83 4,11 3,83 4,11 3,84 4,11 5,51 22,4 82,0 3,85 4,12 5,51 2,62 5,52 4,12 3,84 4,11 3,84 4,11 3,85 4,12 5,52 21h30 23h30 22,1 84,0 3,85 4,13 5,51 2,62 5,53 4,12 3,85 4,12 3,85 4,12 3,85 4,12 5,53

Tabela B.4. TR (s) x frequência (Hz) - Edifício II - sse4 - 5 ren/h; 14h30

					S	Sabin	e									Mi	lling	ton				
Frequência (Hz)	PLC(10)-ar(75)-PLC(10)	PLC(10)-LVI(50)-ar(25)-PLC(10)	GEA(12,5)-ar(75)-GEA(12,5)	GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	PMC(75)-ar(75)-PMC(75)	PMC(75)-LVI(50)-ar(25)-PMC(75)	CCA(100)-ar(75)-CCA(100)	CCA(100)-LVI(50)-ar(25)-CCA(100)	EPS(100)-ar(75)-EPS(100)	EPS(100)-LVI(50)-ar(25)-EPS(100)	ATC(150)	PLC(10)-ar(75)-PLC(10)	PLC(10)-LVI(50)-ar(25)-PLC(10)	GEA(12,5)-ar(75)-GEA(12,5)	GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	PMC(75)-ar(75)-PMC(75)	PMC(75)-LVI(50)-ar(25)-PMC(75)	CCA(100)-ar(75)-CCA(100)	CCA(100)-LVI(50)-ar(25)-CCA(100)	EPS(100)-ar(75)-EPS(100)	EPS(100)-LVI(50)-ar(25)-EPS(100)	ATC(150)
125	1,33	1,33	1,20	1,20	5,73	5,73	3,57	3,57	5,73	5,73	5,73	1,15	1,15	1,02	1,02	4,77	4,78	3,14	3,14	4,77	4,77	4,78
250	2,34	2,34	2,21	2,21	7,31	7,32	2,68	2,68	7,31	7,31	7,32	2,19	2,18	2,05	2,05	6,78	6,79	2,51	2,51	6,78	6,78	6,79
500	3,06	3,06	2,83	2,83	7,03	7,04	1,96	1,96	5,93	5,93	5,94	2,94	2,93	2,71	2,71	6,79	6,80	1,82	1,82	5,74	5,75	5,76
1000	3,38	3,38	3,71	3,71	5,28	5,29	1,88	1,88	5,27	5,27	5,29	3,30	3,30	3,63	3,63	5,19	5,21	1,76	1,76	5,19	5,19	5,20
2000	3,51	3,51	3,51	3,51	4,89	4,91	1,47	1,47	4,88	4,88	4,90	3,46	3,45	3,46	3,46	4,85	4,86	1,35	1,35	4,84	4,84	4,86
4000	2,68	2,67	2,67	2,68	3,42	3,43	1,11	1,11	3,13	3,13	3,14	2,64	2,64	2,64	2,64	3,39	3,41	1,00	1,00	3,10	3,10	3,12

					I	Eyrin	g									Arau	-Pucl	nades	3			
Frequência (Hz)	PLC(10)-ar(75)-PLC(10)	PLC(10)-LVI(50)-ar(25)-PLC(10)	GEA(12,5)-ar(75)-GEA(12,5)	GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	PMC(75)-ar(75)-PMC(75)	PMC(75)-LVI(50)-ar(25)-PMC(75)	CCA(100)-ar(75)-CCA(100)	CCA(100)-LVI(50)-ar(25)-CCA(100)	EPS(100)-ar(75)-EPS(100)	EPS(100)-LVI(50)-ar(25)-EPS(100)	ATC(150)	PLC(10)-ar(75)-PLC(10)	PLC(10)-LVI(50)-ar(25)-PLC(10)	GEA(12,5)-ar(75)-GEA(12,5)	GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	PMC(75)-ar(75)-PMC(75)	PMC(75)-LVI(50)-ar(25)-PMC(75)	CCA(100)-ar(75)-CCA(100)	CCA(100)-LVI(50)-ar(25)-CCA(100)	EPS(100)-ar(75)-EPS(100)	EPS(100)-LVI(50)-ar(25)-EPS(100)	ATC(150)
125	1,24	1,24	1,12	1,12	5,65	5,65	3,49	3,49	5,65	5,65	5,65	3,31	3,31	3,12	3,12	9,82	9,82	6,02	6,02	9,82	9,82	9,82
250	2,27	2,27	2,13	2,13	7,24	7,25	2,60	2,60	7,23	7,24	7,24	4,37	4,37	4,23	4,23	10,06	10,07	4,71	4,72	10,06	10,06	10,07
500	2,99	2,99	2,76	2,76	6,97	6,98	1,88	1,88	5,87	5,87	5,88	4,06	4,06	3,87	3,87	7,86	7,88	3,12	3,12	6,55	6,55	6,56
1000	3,32	3,32	3,66	3,66	5,23	5,24	1,81	1,81	5,22	5,22	5,24	3,77	3,76	4,03	4,03	5,40	5,41	2,58	2,58	5,40	5,40	5,41
2000	3,47	3,46	3,47	3,47	4,85	4,87	1,41	1,41	4,85	4,85	4,87	3,71	3,70	3,70	3,71	4,92	4,93	2,09	2,09	4,91	4,91	4,93
4000	2,65	2,64	2,65	2,65	3,40	3,41	1,05	1,05	3,10	3,11	3,12	2,72	2,72	2,72	2,72	3,42	3,43	1,45	1,45	3,13	3,13	3,14

Tabela B.5. $T_{i}\left(^{\circ}\mathrm{C}\right)$ - Edifício III - auditório - 1 ren/h

						V	1									V	2				
Tempo (h)	Temperatura externa (°C)	PLC(10)-ar(75)-PLC(10)	PLC(10)-LVI(50)-ar(25)-PLC(10)	GEA(12,5)-ar(75)-GEA(12,5)	GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	PMC(75)-ar(75)-PMC(75)	PMC(75)-LVI(50)-ar(25)-PMC(75)	CCA(100)-ar(75)-CCA(100)	CCA(100)-LVI(50)-ar(25)-CCA(100)	EPS(100)-ar(75)-EPS(100)	EPS(100)-LVI(50)-ar(25)-EPS(100)	ATC(150)	PLC(10)-ar(75)-PLC(10)	PLC(10)-LVI(50)-ar(25)-PLC(10)	GEA(12,5)-ar(75)-GEA(12,5)	GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	PMC(75)-ar(75)-PMC(75)	PMC(75)-LVI(50)-ar(25)-PMC(75)	CCA(100)-ar(75)-CCA(100)	CCA(100)-LVI(50)-ar(25)-CCA(100)	EPS(100)-ar(75)-EPS(100)
00h30	21,9	19,0	19,0	18,9	18,8	20,9	20,6	19,8	19,8	20,0	20,0	20,8	20,6	18,3	19,2	19,1	21,0	20,8	20,0	20,0	20,2
01h30	21,6	18,8	18,7	18,7	18,6	20,6	20,4	19,6	19,5	19,7	19,7	20,5	20,3	18,0	18,9	18,9	20,7	20,6	19,8	19,7	19,9
02h30	21,3	18,6	18,5	18,5	18,5	20,4	20,2	19,4	19,3	19,4	19,4	20,2	20,0	17,7	18,8	18,7	20,5	20,4	19,6	19,5	19,6
03h30	21,2	18,4	18,4	18,4	18,3	20,2	20,0	19,1	19,1	19,1	19,1	20,0	19,7	17,6	18,7	18,6	20,3	20,1	19,3	19,3	19,3
04h30	21,2	18,3	18,2	18,2	18,1	19,9	19,8	18,9	18,9	18,8	18,8	19,7	19,5	17,5	18,5	18,4	20,0	19,9	19,1	19,1	19,0
05h30	21,5	18,1	18,0	18,1	17,9	19,7	19,6	18,6	18,6	18,5	18,6	19,4	19,2	17,4	18,4	18,3	19,9	19,7	18,9	18,9	18,8
06h30	22,3	18,1	18,0	18,1	18,0	19,7	19,6	18,6	18,6	18,5	18,6	19,5	19,3	17,5	18,4	18,3	19,9	19,8	18,9	18,9	18,8
07h30	23,5	18,5	18,4	18,5	18,4	20,1	20,0	19,0	19,0	18,8	18,9	19,9	19,6	17,9	18,8	18,8	20,3	20,3	19,3	19,3	19,2
08h30	24,6	19,8	19,7	19,9	19,8	21,5	21,4	20,3	20,3	20,0	20,0	21,2	20,8	18,6	20,3	20,2	21,6	21,6	20,6	20,6	20,3
09h30	25,5	22,1	22,0	22,4	22,3	23,2	23,1	22,4	22,5	21,7	21,8	22,9	22,5	19,9	22,7	22,5	23,3	23,2	22,6	22,6	22,0
10h30	26,2	24,4	24,2	25,0	24,7	23,8	23,7	24,2	24,2	23,0	23,0	23,6	23,5	21,7	25,0	24,8	24,0	23,9	24,3	24,3	23,2
11h30	26,9	26,8	26,3	27,5	26,9	24,4	24,3	25,8	25,8	24,4	24,4	24,4	24,5	23,4	27,3	26,8	24,6	24,5	25,8	25,8	24,5
12h30	27,3	29,2	28,6	29,8	29,2	25,6	25,5	27,6	27,6	26,4	26,3	25,6	26,0	25,1	29,4	28,8	25,6	25,5	27,4	27,4	26,3
13h30	27,5	30,9	30,2	31,3	30,9	26,3	26,2	28,9	28,9	27,8	27,8	26,5	27,2	26,7	30,8	30,4	26,3	26,2	28,6	28,6	27,7
14h30	27,5	31,9	31,3	32,1	31,8	26,8	26,7	29,5	29,5	28,8	28,8	27,1	28,0	27,8	31,6	31,3	26,8	26,7	29,2	29,2	28,6
15h30	26,9	32,3	31,8	32,4	32,2	27,1	27,0	29,9	29,8	29,4	29,4	27,5	28,5	28,2	31,8	31,6	27,1	27,0	29,5	29,5	29,1
16h30	26,1	31,2	30,9	31,1	30,9	26,6	26,5	29,0	29,0	28,9	28,9	27,1	28,1	28,0	30,6	30,5	26,6	26,5	28,8	28,8	28,7
17h30	25,5	28,9	28,6	28,4	28,3	25,6	25,5	27,3	27,2	27,8	27,7	26,0	27,0	27,0	28,3	28,2	25,7	25,6	27,2	27,2	27,7
18h30	24,7	26,5	26,4	26,0	26,1	24,8	24,6	25,7	25,6	26,6	26,5	25,1	26,0	25,4	26,0	26,1	24,9	24,7	25,7	25,7	26,5
19h30	23,9	23,7	23,8	23,3	23,5	23,5	23,3	23,6	23,6	24,6	24,5	23,7	24,5	23,6	23,5	23,7	23,7	23,5	23,8	23,8	24,7
20h30	23,2	21,1	21,3	20,8	20,9	22,1	21,9	21,5	21,4	22,4	22,4	22,2	22,7	21,7	21,1	21,2	22,3	22,1	21,8	21,7	22,6
21h30	22,7	20,0	20,2	19,7	19,7	21,6	21,4	20,6	20,6	21,4	21,4	21,7	21,9	20,1	20,0	20,0	21,7	21,5	20,8	20,8	21,5
22h30	22,4	19,3	19,5	19,1	19,1	21,4	21,1	20,2	20,1	20,7	20,7	21,3	21,3	19,0	19,4	19,4	21,5	21,2	20,4	20,3	20,9
23h30	22,1	18,6	18,6	18,4	18,4	20,8	20,6	19,5	19,5	19,9	19,9	20,7	20,6	18,3	18,7	18,7	21,0	20,7	19,8	19,8	20,1

		7	<i>I</i> ₂						V_3					
Tempo (h)	Temperatura externa (°C)	EPS(100)-LVI(50)-ar(25)-EPS(100)	ATC(150)	PLC(10)-ar(75)-PLC(10)	PLC(10)-LVI(50)-ar(25)-PLC(10)	GEA(12,5)-ar(75)-GEA(12,5)	GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	PMC(75)-ar(75)-PMC(75)	PMC(75)-LVI(50)-ar(25)-PMC(75)	CCA(100)-ar(75)-CCA(100)	CCA(100)-LVI(50)-ar(25)-CCA(100)	EPS(100)-ar(75)-EPS(100)	EPS(100)-LVI(50)-ar(25)-EPS(100)	ATC(150)
00h30	21,9	20,2	20,9	20,1	19,9	20,0	19,8	20,2	19,8	19,9	19,8	19,9	19,9	20,2
01h30	21,6	19,9	20,6	19,7	19,5	19,6	19,4	20,0	19,6	19,5	19,5	19,6	19,6	19,9
02h30	21,3	19,6	20,4	19,3	19,1	19,2	19,0	19,7	19,3	19,2	19,2	19,3	19,3	19,7
03h30	21,2	19,3	20,1	19,0	18,8	18,9	18,7	19,5	19,1	19,0	18,9	19,0	19,0	19,4
04h30	21,2	19,0	19,8	18,8	18,6	18,7	18,5	19,3	19,0	18,8	18,7	18,8	18,8	19,3
05h30	21,5	18,8	19,6	18,7	18,5	18,6	18,4	19,3	19,0	18,7	18,6	18,7	18,7	19,2
06h30	22,3	18,8	19,7	18,7	18,6	18,7	18,5	19,4	19,1	18,8	18,8	18,8	18,8	19,4
07h30	23,5	19,2	20,1	19,0	18,8	18,9	18,8	19,8	19,4	19,1	19,0	19,1	19,1	19,7
08h30	24,6	20,3	21,4	19,4	19,2	19,3	19,1	20,1	19,8	19,5	19,4	19,4	19,4	20,0
09h30	25,5	22,0	23,0	19,8	19,5	19,8	19,5	20,4	20,1	19,8	19,7	19,6	19,6	20,3
10h30	26,2	23,2	23,8	20,3	19,9	20,3	20,0	20,7	20,4	20,1	20,0	20,0	20,0	20,6
11h30	26,9	24,5	24,5	21,0	20,5	21,1	20,5	21,1	20,8	20,6	20,5	20,4	20,4	21,0
12h30	27,3	26,3	25,6	21,7	21,1	21,7	21,2	21,6	21,2	21,1	21,0	20,9	20,9	21,5
13h30	27,5	27,6	26,5	22,4	21,7	22,4	21,8	22,0	21,6	21,6	21,6	21,4	21,4	21,9 22,3
14h30	27,5	28,6	27,1	23,0	22,3	23,0	22,4	22,4	21,9	22,1	22,0	21,8	21,8	22,3
15h30	26,9	29,1	27,4	23,4	22,7	23,4	22,8	22,5	22,1	22,4	22,3	22,1	22,1	22,5
16h30	26,1	28,6	27,0	23,5	22,8	23,5	22,9	22,4	22,0	22,4	22,4	22,2	22,1	22,4
17h30	25,5	27,6	26,0	23,3	22,8	23,3	22,8	22,2	21,8	22,4	22,3	22,1	22,1	22,3
18h30	24,7	26,5	25,2	23,0	22,5	23,0	22,6	22,0	21,6	22,1	22,1	22,0	21,9	22,1
19h30	23,9	24,6	23,9	22,5	22,1	22,5	22,1	21,7	21,3	21,8	21,8	21,7	21,7	21,8
20h30	23,2	22,5	22,4	22,0	21,7	21,9	21,7	21,4	21,0	21,4	21,4	21,4	21,3	21,4
21h30	22,7	21,5	21,8	21,4	21,2	21,3	21,2	21,1	20,7	21,0	21,0	21,0	21,0	21,1
22h30	22,4	20,9	21,4	21,0	20,8	20,9	20,7	20,8	20,4	20,7	20,6	20,7	20,7	20,8
23h30	22,1	20,1	20,9	20,5	20,3	20,4	20,2	20,5	20,1	20,3	20,2	20,3	20,3	20,5

Tabela B.6. TR (s) x frequência (Hz) - Edifício III - auditório - 14h30

(continua)

	V_1									V_1										
Sabine										Eyring										
PLC(10)-LVI(50)-ar(25)-PLC(10)	GEA(12,5)-ar(75)-GEA(12,5)	GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	PMC(75)-ar(75)-PMC(75)	PMC(75)-LVI(50)-ar(25)-PMC(75)	CCA(100)-ar(75)-CCA(100)	CCA(100)-LVI(50)-ar(25)-CCA(100)	EPS(100)-ar(75)-EPS(100)	EPS(100)-LVI(50)-ar(25)-EPS(100)	ATC(150)	PLC(10)-ar(75)-PLC(10)	PLC(10)-LVI(50)-ar(25)-PLC(10)	GEA(12,5)-ar(75)-GEA(12,5)	GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	PMC(75)-ar(75)-PMC(75)	PMC(75)-LVI(50)-ar(25)-PMC(75)	CCA(100)-ar(75)-CCA(100)	CCA(100)-LVI(50)-ar(25)-CCA(100)	EPS(100)-ar(75)-EPS(100)	EPS(100)-LVI(50)-ar(25)-EPS(100)	ATC(150)
1,06	1,01	1,01	1,58	1,58	1,45	1,45	1,58	1,58	1,58	0,92	0,92	0,87	0,87	1,45	1,45	1,32	1,32	1,45	1,45	1,45
	1,21				,		_	_	,	1,09		,				1,14	1,14			1,39
																				1,36
			,		,		, -	_	, -											1,34
			,																	1,30 1,27
; ;	PLC(10)-LVI(50)-ar(25)-PLC(1	PLC(10)-LVI(50)-ar(25)-PLC(1 10,1	DFC(10)-T/I(20)-ar(25)-DFC(10) DFC(10)-T/I(20)-ar(25)-BFC(15) DFC(10)-T/I(20)-AFC(15) DFC(10)-T/I(20)-AFC(DEC(10)-T/I(50)-ar(25)-DEC(10) DEC(10)-T/I(50)-ar(25)-BEA(12,5) DEC(10)-T/I(50)-ar(25)-BEA(12,5) DEC(10)-T/I(50)-ar(25)-BEA(12,5) DEC(10)-T/I(50)-ar(25)-BEA(12,5) DEC(10)-T/I(50)-ar(25)-BEA(12,5) DEC(10)-T/I(50)-ar(25)-BEA(12,5) DEC(10)-T/I(50)-AR(12,5) DEC(10)-T/I(50)-	DEC(10)-T(1(20)-ar(25)-BC(10)-T(1(20)-ar(25)-BC(10)-T(1(20)-ar(25)-BC(12,5)-ar(25)-BC(12,5)-B	DEC(10)-ar(25)-brC(10)-r(1(50)-ar(25)-brC(10)-r(1(50)-ar(25)-brC(10)-r(1(50)-ar(25)-brC(10)-r(1(50)-ar(25)-brC(10)-ar(25)-brC(10)-ar(25)-brC(10)-ar(25)-brC(100)-ar(25)-brC(100)-ar(25)-brC(100)-ar(10	DEC(10) - CCA(100) - Ar(25) - Ar(25) - BrC(10) - Ar(25) -	DEC(10) DEC	DEC(10) DEC	DLC(10)-TVI(50)-ar(25)-BLC(10) DLC(10)-TVI(50)-AR(150)-AR(150) DLC(10)-TVI(50)-AR(150)-AR(150) DLC(10)-TVI(50)-AR(150)-AR(150) DLC(10)-TVI(50)-AR(150) DLC(10)-TVI(50)-AR(PLC(10)-ar(75)-BPS(100) PLC(10)-ar(75)-BPC(15) PLC(10)-ar(75)-BPC(15) PLC(10)-ar(75)-BPC(15) PLC(10)-ar(75)-BPC(15) PLC(10)-ar(75)-BPS(100) PLC(10)-APPS(100) PLC(10)-AP	DLC(10) PLC(10) PLC	DLC(10)-LVI(50)-ar(75)-BLC(10) PLC(10)-LVI(50)-ar(75)-BLC(15) PLC(10)-LVI(50)-ar(75)-BLC(16) PLC(10)-LVI(50)-AR(15) PLC(10)-LVI(50)-AR(15) PLC(10)-LVI(50)-AR(15) PLC(10)-LVI(50)-AR(15) PLC(10)-LVI(50)-AR(15) PLC(10)-RVI(50)-AR(15) PLC(10)-RVI(50)-AR(15)	PLC(10)-T/I(50)-ar(25)-BC(10) PLC(10)-T/I(50)-AC(10) PLC(10)-T/I(50)-AC(10)	DLC(10) PLC(10) PLC	PLC(10)-TVI(50)-ar(25)-PLC(10) PLC(10)-TVI(50)-ar(25)-PMC(75) PLC(10)-TVI(50)-ar(25)-PLC(10) PLC(10)-TVI(50)-ar(25)-PLC(10) PLC(10)-TVI(50)-ar(25)-PLC(10) PLC(10)-TVI(50)-ar(25)-PLC(10) PLC(10)-TVI(50)-ar(25)-BS(100) PLC(10)-TVI(50)-AR(25)-BS(100)	DLC(10) PLC(10) PLC	DLC(10) PLC(10) PLC	PLC(10) PLC	PLC(10)-1/1(50)-4r(25)-EPS(100) PLC(10)-1/1(50)-4r(25)-EPS(100) PLC(10)-1/1(50)-4r(25)-BNC(25) PLC(10)-1/1(50)-4r(25)-BNC(2

						V_1											V_2					
		Millington									Sabine											
Frequência (Hz)	PLC(10)-ar(75)-PLC(10)	PLC(10)-LVI(50)-ar(25)-PLC(10)	GEA(12,5)-ar(75)-GEA(12,5)	GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	PMC(75)-ar(75)-PMC(75)	PMC(75)-LVI(50)-ar(25)-PMC(75)	CCA(100)-ar(75)-CCA(100)	CCA(100)-LVI(50)-ar(25)-CCA(100)	EPS(100)-ar(75)-EPS(100)	EPS(100)-LVI(50)-ar(25)-EPS(100)	ATC(150)	PLC(10)-ar(75)-PLC(10)	PLC(10)-LVI(50)-ar(25)-PLC(10)	GEA(12,5)-ar(75)-GEA(12,5)	GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	PMC(75)-ar(75)-PMC(75)	PMC(75)-LVI(50)-ar(25)-PMC(75)	CCA(100)-ar(75)-CCA(100)	CCA(100)-LVI(50)-ar(25)-CCA(100)	EPS(100)-ar(75)-EPS(100)	EPS(100)-LVI(50)-ar(25)-EPS(100)	ATC(150)
125	0,89	0,89	0,84	0,84	1,30	1,30	1,21	1,21	1,30	1,30	1,30	1,41	1,41	1,34	1,34	2,17	2,17	1,98	1,98	2,17	2,17	2,17
250	1,09	1,09	1,07	1,07	1,34	1,34	1,13	1,13	1,34	1,34	1,34	1,77	1,77	1,73	1,73	2,27	2,27	1,84	1,84	2,27	2,27	2,27
500	1,19	1,19	1,16	1,16	1,36	1,36	1,05	1,05	1,33	1,33	1,33	2,03	2,03	1,97	1,98	2,42	2,42	1,74	1,74	2,35	2,35	2,35
1000	1,21	1,21	1,23	1,23	1,32 1,28	1,32	1,03	1,03	1,31	1,31	1,31	2,08	2,09	2,12	2,14	2,31	2,31	1,71 1,52	1,71	2,30	2,30	2,31
2000 4000	1,18	1,19	1,20 1,18	1,18	1,28	1,28	0,93	0,93	1,28	1,28 1,24	1,28	2,06 1,96	2,07 1,96	2,04 1,92	2,07 1,96	2,23	2,23	1,35	1,52	2,21	2,22	2,23

	V_2									V_2												
		Eyring									Millington											
Frequência (Hz)	PLC(10)-ar(75)-PLC(10)	PLC(10)-LVI(50)-ar(25)-PLC(10)	GEA(12,5)-ar(75)-GEA(12,5)	GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	PMC(75)-ar(75)-PMC(75)	PMC(75)-LVI(50)-ar(25)-PMC(75)	CCA(100)-ar(75)-CCA(100)	CCA(100)-LVI(50)-ar(25)-CCA(100)	EPS(100)-ar(75)-EPS(100)	EPS(100)-LVI(50)-ar(25)-EPS(100)	ATC(150)	PLC(10)-ar(75)-PLC(10)	PLC(10)-LVI(50)-ar(25)-PLC(10)	GEA(12,5)-ar(75)-GEA(12,5)	GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	PMC(75)-ar(75)-PMC(75)	PMC(75)-LVI(50)-ar(25)-PMC(75)	CCA(100)-ar(75)-CCA(100)	CCA(100)-LVI(50)-ar(25)-CCA(100)	EPS(100)-ar(75)-EPS(100)	EPS(100)-LVI(50)-ar(25)-EPS(100)	ATC(150)
125	1,24	1,24	1,17	1,17	2,01	2,01	1,81	1,81	2,01	2,01	2,01	1,17	1,17	1,11	1,11	1,76	1,76	1,63	1,63	1,76	1,76	1,76
250	1,60	1,60	1,57	1,57	2,11	2,11	1,68	1,68	2,11	2,11	2,11	1,57	1,57	1,53	1,54	1,98	1,98	1,63	1,63	1,98	1,98	1,98
500	1,87	1,87	1,82	1,82	2,27	2,27	1,58	1,58	2,20	2,20	2,20	1,84	1,84	1,79	1,80	2,18	2,18	1,58	1,58	2,12	2,12	2,12
1000 2000	1,94	1,94 1,94	1,98	1,99 1,94	2,17	2,17	1,57	1,57 1,38	2,16	2,16	2,17	1,91	1,91	1,94 1,87	1,95 1,90	2,10	2,10	1,56 1,38	1,56 1,38	2,09	2,09	2,10
4000	1,93	1,86	1,83	1,94	2,10	2,10	1,38	1,38	1,95	1,95	1,97	1,89	1,83	1,87	1,83	1,96	1,96	1,38	1,38	1,90	1,90	2,04 1,91

Tabela B.6. TR (s) x frequência (Hz) - Edifício III - auditório - 14h30

(conclusão)

						V_3											V_3					
					S	Sabin	e									F	Eyrin	g				
Frequência (Hz)	PLC(10)-ar(75)-PLC(10)	PLC(10)-LVI(50)-ar(25)-PLC(10)	GEA(12,5)-ar(75)-GEA(12,5)	GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	PMC(75)-ar(75)-PMC(75)	PMC(75)-LVI(50)-ar(25)-PMC(75)	CCA(100)-ar(75)-CCA(100)	CCA(100)-LVI(50)-ar(25)-CCA(100)	EPS(100)-ar(75)-EPS(100)	EPS(100)-LVI(50)-ar(25)-EPS(100)	ATC(150)	PLC(10)-ar(75)-PLC(10)	PLC(10)-LVI(50)-ar(25)-PLC(10)	GEA(12,5)-ar(75)-GEA(12,5)	GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	PMC(75)-ar(75)-PMC(75)	PMC(75)-LVI(50)-ar(25)-PMC(75)	CCA(100)-ar(75)-CCA(100)	CCA(100)-LVI(50)-ar(25)-CCA(100)	EPS(100)-ar(75)-EPS(100)	EPS(100)-LVI(50)-ar(25)-EPS(100)	ATC(150)
125	1,84	1,84	1,75	1,75	2,90	2,90	2,65	2,63	2,90	2,90	2,90	1,63	1,63	1,54	1,54	2,69	2,69	2,44	2,41	2,69	2,69	2,69
250	2,45	2,45	2,40	2,40	3,24	3,24	2,61	2,57	3,24	3,24	3,24	2,24	2,24	2,19	2,19	3,03	3,04	2,41	2,36	3,04	3,04	3,04
500	2,91	2,92	2,84	2,84	3,57	3,58	2,53	2,46	3,46	3,46	3,46	2,72	2,72	2,64	2,65	3,38	3,39	2,33	2,27	3,27	3,27	3,27
1000 2000	3,08	3,09	3,17	3,18	3,48	3,48	2,54	2,47	3,48	3,48	3,48	2,91	2,92	3,00 2,90	3,01 2,91	3,31	3,31	2,36	2,29	3,31	3,31	3,31
4000	2,73	2,74	2,73	3,05 2,74	2,96	2,97	1,90	2,16 1,84	2,89	2,90	2,89	2,63	2,65	2,63	2,65	2,87	3,19 2,88	1.77	1,70	2,80	2,80	3,19 2,79

						V_3					
					Mi	lling	ton				
Frequência (Hz)	PLC(10)-ar(75)-PLC(10)	PLC(10)-LVI(50)-ar(25)-PLC(10)	GEA(12,5)-ar(75)-GEA(12,5)	GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	PMC(75)-ar(75)-PMC(75)	PMC(75)-LVI(50)-ar(25)-PMC(75)	CCA(100)-ar(75)-CCA(100)	CCA(100)-LVI(50)-ar(25)-CCA(100)	EPS(100)-ar(75)-EPS(100)	EPS(100)-LVI(50)-ar(25)-EPS(100)	ATC(150)
125	1,53	1,53	1,45	1,45	2,33	2,33	2,16	2,15	2,33	2,33	2,33
250	2,16	2,16	2,12	2,12	2,81	2,81	2,30	2,26	2,81	2,81	2,81
500	2,66 2,84	2,66	2,59 2,92	2,60	3,23 3,19 3,08 2,80	3,24 3,20	2,30 2,33	2,24 2,27	3,14 3,20	3,14 3,20	3,14 3,19 3,08 2,73
1000	2,84	2,85	2,92	2,93	3,19	3,20	2,33	2,27	3,20	3,20	3,19
2000	2,83	2,84	2,83 2,59	2,83 2,60	3,08	3,09 2,81	2,04 1,73	1,97 1,67	3,09	3,09	3,08
4000	2,59	2,60	2,59	2,60	2,80	2,81	1,73	1,67	2,74	2,74	2,73

Tabela B.7. Absorção sonora devida ao ar (m^2) x frequência (Hz) - Edifício III - auditório - 14h30

	V ₁	V_2	V ₃	V ₁	V_2	V ₃	V ₁	V ₂	V_3
Frequência (Hz)	500	500	500	1000	1000	1000	2000	2000	2000
PLC(10)-ar(75)-PLC(10)	6,2	11,2	19,5	12,3	22,1	38,4	20,3	36,8	64,9
PLC(10)-LVI(50)-ar(25)-PLC(10)	6,1	11,1	19,1	12,1	21,9	37,6	20,0	36,6	63,8
GEA(12,5)-ar(75)-GEA(12,5)	6,2	12,3	19,5	12,3	24,3	38,4	20,4	40,2	65,0
GEA(12,5)-LVI(50)-ar(25)-GEA(12,5)	6,2	11,1	19,2	12,2	21,9	37,7	20,2	36,6	63,9
PMC(75)-ar(75)-PMC(75)	5,4	10,8	19,1	10,7	21,4	37,7	17,9	35,7	63,9
PMC(75)-LVI(50)-ar(25)-PMC(75)	5,4	10,8	18,9	10,6	21,3	37,2	17,8	35,7	63,2
CCA(100)-ar(75)-CCA(100)	5,8	11,6	19,0	11,5	22,8	37,4	19,1	38,0	63,5
CCA(100)-LVI(50)-ar(25)-CCA(100)	5,8	11,6	19,0	11,5	22,8	37,3	19,1	38,0	63,4
EPS(100)-ar(75)-EPS(100)	5,7	11,4	18,9	11,3	22,5	37,1	18,8	37,4	63,0
EPS(100)-LVI(50)-ar(25)-EPS(100)	5,7	11,4	18,9	11,3	22,4	37,1	18,8	37,4	63,0
ATC(150)	5,5	10,9	19,1	10,8	21,5	37,6	18,0	36,0	63,8